Math, asked by AnjanaKB, 3 months ago

Find the area line in the first quadrant and bounded by the circle x²+y²=4 and the lines X=0,X=2​

Answers

Answered by mathdude500
4

\large\underline\purple{\bold{Solution :-  }}

☆ Equation of given circle is

\tt \:   {x}^{2}  +  {y}^{2}  = 4

\tt \:   {(x - 0)}^{2}  +  {(y - 0)}^{2}  =  {(2)}^{2}

\tt\implies \:radius  \: of  \: circle = 2 \:  and \:  centre \:  is  \: (0, 0)

☆ x = 0 represents the y - axis.

☆ x = 2 represents a line parallel to y-axis and passes through (2, 0).

 \red{ \tt \: So \:  Required  \: area = \:  Area \:  of   \: Shaded \:  region}

\tt \longrightarrow \:  =  \: Area \:  OAB

\tt \longrightarrow \:  = \int_0^2 \: y \: dx

\tt \longrightarrow \:  = \int_0^2 \:  \sqrt{ {2}^{2} -  {x}^{2}  }  \: dx

\tt \longrightarrow \:  =  \bigg[ \dfrac{x}{2}  \sqrt{ {2}^{2}  -  {x}^{2} }  + \dfrac{ {2}^{2} }{2}  {sin}^{ - 1}\dfrac{x}{2}  \bigg]_0^2

\tt \longrightarrow \:  = \bigg[ \dfrac{2}{2}  \sqrt{ {2}^{2}  -  {2}^{2} }  + \dfrac{ {2}^{2} }{2}  {sin}^{ - 1}\dfrac{2}{2}  \bigg] - \bigg[ \dfrac{0}{2}  \sqrt{ {2}^{2}  -  {0}^{2} }  + \dfrac{ {2}^{2} }{2}  {sin}^{ - 1}\dfrac{0}{2}  \bigg]

\tt \longrightarrow \:  = 0 + 2 {sin}^{ - 1} 1 - 0 - 0

\tt \longrightarrow \:  = 2 \times \dfrac{\pi}{2}

\tt \longrightarrow \:  = \pi \: square \: units

Attachments:
Similar questions