Math, asked by gourinandhanams3101, 9 months ago

Find the area of a isosceles triangle which has perimeter 50 m and whose unequal side is 10 m



Pls answer correctly I will mark you brainlist ​

Answers

Answered by MohamedFadil
1

Answer:

50√3 m²

Step-by-step explanation:

Given:

Perimeter=50 m

Unequal side=10 m

Solution:

Let the equal sides be 'x'

Perimeter= x + x + 10 m = 50 m

2x = 40 m

x=20 m

By pythogoras theorem:

AD=√400-100 m

AD= 10√3 m

Area=1/2*10*10√3

=50 √3  m²

Answered by merinmathew232
2

Answer:25√15m^{2}

Step-by-step explanation:

Given Perimeter = 50 m

⇒ x + x +10m = 50m(Since 2 sides are equal)

⇒2x + 10=50m

⇒2x= 40m

⇒x= 40/2=20m

∴Each of the equal side = 20m

Now Area =\sqrt{s(s-a) (s-b)(s-c)}                                       s= \frac{a+b+c}{2}= \frac{50}{2} =25

               =\sqrt{25(25-20)(25-20)(25-10)}

               =\sqrt{25 X 5 X5 X 15} =25√15m^{2}

Similar questions