find the area of a rectangle whose length is 2x+7 and breadth is y-5
Answers
Given:
A rectangle with
- Length = 2x + 7
- Breadth = y - 5
What To Find:
We have to find the area of the rectangle.
How To Find:
Use the formula i.e
- Area of Rectangle = Length × Breadth
Solution:
Using the formula,
⇒ Area = Length × Breadth
Substitute the values,
⇒ Area = (2x + 7) × (y - 5)
Use distributive property,
⇒ Area = 2x(y - 5) + 7(y - 5)
Remove the bracket in 2x(y - 5),
⇒ Area = 2x × y - 2y - 5 + 7(y - 5)
Multiply them,
⇒ Area = 2xy - 10y + 7(y - 5)
Remove the bracket in 7(y - 5),
⇒ Area = 2xy - 10y + 7 × y - 7 × 5
Multiply them,
⇒ Area = 2xy - 10y + 7y - 35
Add -10y and 7y,
⇒ Area = 2xy - 3y - 35
∴ Thus, the area is 2xy - 3y - 35.
Given:
A rectangle with
Length = 2x + 7
Breadth = y - 5
What To Find:
We have to find the area of the rectangle.
How To Find:
Use the formula i.e
Area of Rectangle = Length × Breadth
Solution:
Using the formula,
⇒ Area = Length × Breadth
Substitute the values,
⇒ Area = (2x + 7) × (y - 5)
Use distributive property,
⇒ Area = 2x(y - 5) + 7(y - 5)
Remove the bracket in 2x(y - 5),
⇒ Area = 2x × y - 2y - 5 + 7(y - 5)
Multiply them,
⇒ Area = 2xy - 10y + 7(y - 5)
Remove the bracket in 7(y - 5),
⇒ Area = 2xy - 10y + 7 × y - 7 × 5
Multiply them,
⇒ Area = 2xy - 10y + 7y - 35
Add -10y and 7y,
⇒ Area = 2xy - 3y - 35