Math, asked by VNNGS0465, 3 months ago

find the area of a rectangle whose length is 2x+7 and breadth is y-5

Answers

Answered by IntrovertLeo
5

Given:

A rectangle with

  • Length = 2x + 7
  • Breadth = y - 5

What To Find:

We have to find the area of the rectangle.

How To Find:

Use the formula i.e

  • Area of Rectangle = Length × Breadth

Solution:

Using the formula,

⇒ Area = Length × Breadth

Substitute the values,

⇒ Area = (2x + 7) × (y - 5)

Use distributive property,

⇒ Area = 2x(y - 5) + 7(y - 5)

Remove the bracket in 2x(y - 5),

⇒ Area = 2x × y - 2y - 5 + 7(y - 5)

Multiply them,

⇒ Area = 2xy - 10y + 7(y - 5)

Remove the bracket in 7(y - 5),

⇒ Area = 2xy - 10y + 7 × y - 7 × 5

Multiply them,

⇒ Area = 2xy - 10y + 7y - 35

Add -10y and 7y,

⇒ Area = 2xy - 3y - 35

∴ Thus, the area is 2xy - 3y - 35.

Answered by tejas9193
9

Given:

A rectangle with

Length = 2x + 7

Breadth = y - 5

What To Find:

We have to find the area of the rectangle.

How To Find:

Use the formula i.e

Area of Rectangle = Length × Breadth

Solution:

Using the formula,

⇒ Area = Length × Breadth

Substitute the values,

⇒ Area = (2x + 7) × (y - 5)

Use distributive property,

⇒ Area = 2x(y - 5) + 7(y - 5)

Remove the bracket in 2x(y - 5),

⇒ Area = 2x × y - 2y - 5 + 7(y - 5)

Multiply them,

⇒ Area = 2xy - 10y + 7(y - 5)

Remove the bracket in 7(y - 5),

⇒ Area = 2xy - 10y + 7 × y - 7 × 5

Multiply them,

⇒ Area = 2xy - 10y + 7y - 35

Add -10y and 7y,

⇒ Area = 2xy - 3y - 35

∴ Thus, the area is 2xy - 3y - 35.

Similar questions