Math, asked by ranjeetkhehra2, 7 months ago

Find the area of a rectangular field which is 46 3 by 4m and 32 4 by 5 wide​

Answers

Answered by Agamsain
3

Answer :-

  • Area of Rectangular Field = 1533.4 m²

Given :-

  • Length of Rectangular Field =  46 ¾ m
  • Width of Rectangular Field = 32 ⅘ m

To Find :-

  • Area of Rectangular Field =  ?

Explanation :-  

As per above given, We have the Length and Width of Field, but they are in Mixed Fraction; So first we need to convert them in Improper Fraction.

\rm \odot \: Length = 46 \dfrac{3}{4} = \dfrac{46 \times 4 + 3}{4} = \bold{\dfrac{187}{4} \: m}

\rm \odot \: Width = 32 \dfrac{4}{5} = \dfrac{32 \times 5 + 4}{5} = \bold{\dfrac{164}{5} \: m}

\blue { \boxed { \bf \bigstar \: Area \: of \: Rectangle  = Length \times Width \: \bigstar }}

\rm : \: \longrightarrow \dfrac{187}{4} \times \dfrac{164}{5} \: m^2

\rm : \: \longrightarrow \dfrac{187 \times 164}{4 \times 5} \: m^2

\rm : \: \longrightarrow \dfrac{30668}{20} \: m^2

\red { \underline { \boxed { \bf : \: \longrightarrow 1533.4 \: m^2 }}}

Hence, the Area of the Rectangular Field is 1533.4 m²

‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒‒

\underbrace { \overbrace { \huge \text{More To Know} }}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large Length}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large Width}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

\rm \odot \: \text{Area of Rectangle} = \bold{Length \times Width}

\rm \odot \: \text{Perimeter of Rectangle} = \bold{2 \: (Length + Width)}

\rm \odot \: \text{Diagonal of Rectangle} = \bold{\sqrt{(Length)^2 + (Width)^2}}

Similar questions