Math, asked by sarahhh312, 5 months ago

find the area of a rhombus having each side equal to 13 cm and one of whose diagonals is 10 cm......​

Answers

Answered by tellmetheans
2

Answer:

60

Step-by-step explanation:

Attachments:
Answered by Rubellite
7

\Large{\underbrace{\sf{\purple{ Required\:Solution:}}}}

Given :

  • Eαch side of α rhombus = 13cm.
  • One of the diαgonαl = 10cm.

To Find :

  • Areα of the rhombus.

Knowledge Required :

Pythαgorαs theorem —

\large\star{\boxed{\sf{\purple{ (Base)^{2}+(Perpendicular)^{2} = (Hypotenuse)^{2}}}}}

_________

\large\star{\boxed{\sf{\purple{ Area_{(rhombus)}= \dfrac{1}{2} \times d_{1} \times d_{2}}}}}

Step by step Explαnαtion :

:\implies{\sf{ (OA)^{2} + (OB)^{2} = (AB)^{2}}}

:\implies{\sf{ (OA)^{2} + (\dfrac{10}{2})^{2} = (13)^{2}}}

:\implies{\sf{ (OA)^{2} + (5)^{2} = (13)^{2}}}

:\implies{\sf{ (OA)^{2} + 25 = 169}}

:\implies{\sf{(OA)^{2}= 169-25}}

:\implies{\sf{ (OA)=144}}

:\implies{\sf{ OA = \sqrt{144}}}

:\implies{\sf{ OA = 12}}

Now,

\displaystyle{\sf{ AC = OA \times 2}}

\implies{\sf{ AC = 12\times 2}}

\implies{\sf{ AC = 24cm}}

After thαt,

  • Substitute the vαlues in the formulαe of αreα of rhombus.

\longrightarrow{\sf{ \dfrac{1}{2} \times 24cm \times 10cm}}

\longrightarrow{\sf{ \dfrac{1}{\cancel{2}} \times \cancel{24cm} \times 10cm}}

\longrightarrow{\sf{ 12cm \times 10cm}}

\implies{\boxed{\sf{\purple{ 120cm^{2}}}}}

Hence, the αreα of rhombus is 120cm².

And we αre done! :D

__________________________

Attachments:

EliteZeal: Superbb!
tellmetheans: How do u do thAT BROO
Rubellite: Thanks @EliteZeal :)
Similar questions