Math, asked by muthyalaprameela1983, 4 months ago

Find the area of a rhombus having perimeter 80 em and one diagonal 24 em
(1) 354 sq. em (2) 364 sq. em (3) 384 sqem​

Answers

Answered by Anonymous
0

\large{\sf{\underline{\underline\red{Solution!!}}}}

Given that,

  • \sf{Perimeter\: of\: rhombus = 80 \:cm.}
  • \sf{First\: diagonal = d_1 = 24 \: cm.}

We have to find the area and the other diagonal of the rhombus.

  • \sf{Second \:diagonal = d_2 = ?}

Now,

⇒  \sf{Perimeter\: of \:the\: rhombus = 4a^2}

⇒  \sf{Perimeter = 80 \:cm.}

⇒  \sf{80\: cm = 4 a}

⇒  \sf{20\:cm = 1a}

⇒  \sf{a=20\:cm}

To find the second diagonal :-

:\implies\:\sf{4a^2=d_1 \:^2+d_2\:^2}

:\implies\:\sf{4\times20\times10=24\times24+d_2\:^2}

:\implies\:\sf{1600=576+d_2\:^2}

:\implies\:\sf{d_2\:^2=1600-576}

:\implies\:\sf{d_2\:^2=1024}

:\implies\:\sf{d_2=\sqrt{ 1024}}

:\implies\:\sf{d_2=32\:cm}

Now,

To Find Area of rhombus :-

:\implies\:\sf{\dfrac{1}{2} \times d_1 \times d_2}

:\implies\:\sf{\dfrac{1}{2} \times 24 \times 32}

:\implies\:\sf{12 \times 32}

:\implies\:\sf{384 \:cm^2}

Therefore,

Other diagonal of rhombus = 32 cm.

Area of  rhombus = 384 sq. cm.

Similar questions