Math, asked by Amangautama, 1 year ago

find the area of a rhombus one of whose side measures 20 cm and one of whose diagonals is 24 cm

Answers

Answered by siddhartharao77
63
Let ABCD is a rhombus with the diagonals AC and BD which intersect each other at O.

Given AC = 24cm.

Then AO = 12cm.

Let BO = x and AB = 20cm.

By Pythagoras theorem, we know that 

c^2 = a^2 + b^2

20^2 = 12^2 + x^2

400 = 144 + x^2

x^2 = 400 - 144

x^2 = 256

x = 16cm.

Diagonal BD = 2 * 16

                      = 32cm.

We know that Area of the rhombus = 1/2 * (product of diagonals)

                                                            = 1/2 * 24 * 32

                                                            = 12 * 32

                                                            = 384 sq.cm.


Hope this helps!
Answered by hcsatbir
3

The area of the rhombus is \bold{384\mathrm{cm}^{2}}384cm

2

Given:

One side of a rhombus = 20cm and one diagonal = 24 cm

To Find:

The area of a rhombus

Solution:

In the rhombus ABCD,

Let, AB = 20 cm

And AC = 24 cm

From the diagram,

AO + CO = 24 cm

AO = 12 cm [∵ AO = CO]

In \Delta \mathrm{AOB},ΔAOB,

AB = 20 cm and AO= 12 cm

Using Pythagoras Theorem,

\mathrm{BO}=\sqrt{20^{2}-12^{2}}\ \mathrm{cm}BO=

20

2

−12

2

cm

=\sqrt{400-144}\ \mathrm{cm}=

400−144

cm

=\sqrt{256}\ \mathrm{cm}=

256

cm

=16\ \mathrm{cm}=16 cm

Hence, BO = DO = 16 cm

∴ BD = 16 cm + 16 cm = 32 cm.

Area of a Rhombus =\frac{1}{2} \times \text { Diagonal } 1 \times \text { Diagonal } 2=

2

1

× Diagonal 1× Diagonal 2

=\frac{1}{2} \times A C \times B D=

2

1

×AC×BD

=\frac{1}{2} \times 24\ \mathrm{cm} \times 32\ \mathrm{cm}=

2

1

×24 cm×32 cm

=384\ \mathrm{cm}^{2}=384 cm

Similar questions