Math, asked by yuvikajauhari9287, 1 year ago

Find the area of a rhombus one side of which measure 20cm and one of whose diagonals is 24 cm

Answers

Answered by kharsimran939
0

Answer:

384 cm ^2

Step-by-step explanation:

see attachment

Hope it helps you

Attachments:
Answered by hotcupid16
146

Given :-

  • Each side of the rhombus measures 20 cm.

  • And also one of its diagonals is 24 cm.

To Find :-

  • Area of the rhombus.

Calculation :-

Here,

  • AB = 20 cm
  • BO = 12 cm

We know that diagonals of a rhombus bisects each other at right angle [at  \tt \: 90° ]

In right \Delta  \bf{AOB}, by Pythagoras theorem.

 \sf{\longrightarrow AB^2  \: = \:  BO^2 \:  +  \: AO^2} \\  \\ \\  \sf{\longrightarrow (20)^2  \: = \:  (12)^2  \: +  \: AO^2 } \\  \\ \\   \sf \: \longrightarrow \: 400 \:  -  \: 144 \:  = AO^2 \:  \\  \\  \\ \longrightarrow \underline{\boxed{\bf{256 \:  =  \:  \: AO^2 }}} \:

Now, calculating,

 \sf{\longrightarrow AO \:  =  \:  \sqrt{256}  \: cm^2}  \\  \\  \\  \longrightarrow \underline{\boxed{\bf{AO \:  =  \: 16 \: cm }}} \:

Therefore,

 \sf{\longrightarrow BD \:  =  \: 16 + 16  \: cm}  \\  \\  \\  \longrightarrow \underline{\boxed{\bf{BD \:  =  \: 32 \: cm }}} \:

 \dag According to the Question,

We know that,

\boxed{\bf{ Area  \: of \:  rhombus \:  =  \dfrac{1}{2} \:  \times d_1 \:  \times d_2 }}

Where,

Diagonal 1 is 24 cm [Given]

Diagonal 2 is 32 cm

Putting the values,

 \sf{\longrightarrow  \dfrac{1}{2}  \: \times  \: d_1 \times \:  d_2}  \\  \\  \\  \sf \: {\longrightarrow  \dfrac{1}{2}  \: \times  \: 24  \: cm \: \times \:  32 \: cm}  \\  \\  \\ \longrightarrow \underline{\boxed{\bf{ 384 \: cm^2 }}} \: \purple{\bigstar}

 \therefore Hence, area of the rhombus is  \bf 384 \: cm^2 .

Attachments:
Similar questions