Math, asked by Tktack683, 2 months ago

Find the area of a rhombus whose one diagonal is 8cm and other diagonal is 6cm.​

Answers

Answered by amanjith
2

Answer:

24cm²

Step-by-step explanation:

Area of rhombus  is 1/2 x D1 xD2

=1/2x48=24cm²

Answered by Anonymous
8

Correct Question-:

  • Find the area of a rhombus whose one diagonal is 8cm and other diagonal is 6cm.

AnswEr-:

  • \implies{\sf{\large {Area\:of\:Rhombus\: = \: 24cm² }}}

EXPLANATION-:

  •  \frak{Given \:\: -:} \begin{cases} \sf{The\:Diagonal_{1} \:of\:Rhombus \:\:is\:= \frak{8cm}} & \\\\ \sf{The\:Diagonal_{2} \:of\:Rhombus \:\:is\: \:=\:\frak{6cm}}\end{cases} \\\\
  •  \frak{To \:Find\: -:} \begin{cases} \sf{The\:Area\:of\:Rhombus \:.\:}\end{cases} \\\\

Solution -:

  • \underline{\boxed{\star{\sf{\blue{ Area \:of\:Rhombus\:is\:  \: =\frak{\frac{1}{2}× Diagonal _{1}Diagonal _{2}}\:.}}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{The\:Diagonal_{1} \:of\:Rhombus \:\:is\:= \frak{8cm}} & \\\\ \sf{The\:Diagonal_{2} \:of\:Rhombus \:\:is\: \:=\:\frak{6cm}}\end{cases} \\\\

Now,

  • \implies{\sf{\large {Are_{(Rhombus)}\: = \: frac{1}{2}× 8 × 6 }}}
  • \implies{\sf{\large {Are_{(Rhombus)}\: = \: 4 × 6 }}}
  • \implies{\sf{\large {Are_{(Rhombus)}\: = \: 24cm² }}}

Therefore,

  • \implies{\sf{\large {Are_{(Rhombus)}\: = \: 24cm² }}}

Hence ,

  • \implies{\sf{\large {Area\:of\:Rhombus\: = \: 24cm² }}}

Figure of Rhombus-:

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\put(0,0){\line(1,3){1.5}}\put(0,0){\line(1,0){5}}\put(5,0){\line(1,3){1.5}}\put(1.5,4.5){\line(1,0){5}}\qbezier(1.56,4.5)(1.56,4.5)(5,0)\qbezier(6.45,4.5)(6.45,4.5)(0,0)\put(-0.5,-0.5){\sf B}\put(1,4.8){\sf A}\put(5.2,-0.5){\sf C}\put(6.7,4.75){\sf D}\put(3,1.6){\sf O}\end{picture}

____________☆_______________

More To Know

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

________________________________

Note -:

  • Please see this answer in website of brainly . [ Brainly.in]

___________________♡___________________________

Similar questions