Math, asked by parmarpriti5431, 4 months ago

Find the area of a rhombus whose one side is 8 cm and height is 6 cm . ​

Answers

Answered by Anonymous
7

❏GIVEN:

➠One Side is =8cm

➠Height is=6cm

❏TO FIND:

➠Area of rhombus=?¿

❏Formula Used:

➠Area of rhombus =Breadth × Height

❏Procedure:

Convert deci- metre to cm

  \fbox \pink{1dm = 10cm}

➠So, 0.8 dm will be 18×0.8

➠8cm

We know are of rhombus is Breadth × Height

So,

Area = 8cm \times 8cm \\  {64cm}^{2}

➠MORE APPROACHES TO FIND AREAS OF DIFFERENT FIGURES↷

1/2 Base × Height= Area of Triangle

Length × Breadth = Rectangles Area

HOPE IT HELPS U! :)

Answered by Anonymous
54

Given:-

  • One side of the rhombus is 8 cm.
  • Height of the rhombus is 6 cm.

To find:-

  • Area of the rhombus.

Solution:-

Formula used:-

\star{\boxed{\sf{\orange{Area\: of\: rhombus = base \times height}}}}

\tt\longmapsto{b \times h}

\tt\longmapsto{8 \times 6}

\tt\longmapsto{\boxed{\red{48\: cm^2}}}

Hence,

  • the area of the rhombus is 48 cm².

More to know :-

\sf{Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\sf{Area\;of\;Square\;=\;(Side)^{2}}

\sf{Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\sf{Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\sf{Area\;of\;Circle\;=\;\pi r^{2}}

\sf{Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\sf{Perimeter\;of\;Rectangle\;=\;4\;\times\;(Side)}

\sf{Perimeter\;of\;Circle\;=\;2\pi r}

Similar questions