Math, asked by amith20, 15 hours ago

find the area of a rhombus whose sides are 22m and 14m

Answers

Answered by BrainlySparrow
33

Step-by-step explanation:

Given :-

  • The sides of a rhombus are 22m and 14m.

To Find :-

  • Area of the rhombus.

Solution :-

We know that,

 \\  : \implies  \underline{\boxed{ \bf Area_{(Rhombus)}  =  \frac{1}{2}  \times d_1  \times d_2 }} \:  \bigstar

Substituting the values in the formula,

 \\  \longrightarrow \sf \: Area_{(Rhombus)} =  \dfrac{1}{2}  \times 22 \times 14 \\  \\ \longrightarrow \sf \: Area_{(Rhombus)} =  \dfrac{1}{ \cancel2}  \times  \cancel{22} \times 14 \\  \\ \longrightarrow \sf \: Area_{(Rhombus)} = 11 \times 14 \\  \\ \longrightarrow  \boxed{\bf \: Area_{(Rhombus)} = 154 \:  {cm}^{2} }

 \\  \bf{ \therefore \underline{ \: Area \: of \: rhombus \: is \:   \pink{154 \: {cm}^{2} }}}

Answered by Sɴɪɢᴅʜᴀ
25

✰ Given :

  • The sides of rhombus are 22 m and 14 m. We need to find the area of the rhombus.

✰ To Find :

  • To Find the area of the rhombus, we need to know the formula of rhombus of finding its area.

✰ Formula :

\\ \: \: \: { \underline{ \boxed{ \mathfrak{ \pmb{Area \: \: _{(rhombus )}= \dfrac{1}{2} \: (product \: \: of \: \: diagonals)}}}}} \\ \\

✰ Solution :

So, substituting the given values :

 \\ : \implies{ \tt{Area \: of \: the \: rhombus = \dfrac{1}{2} \: (product \: \: of \: \: diagonals)}} \\ \\ \\ \tt : \implies \: Area \: of \: the \: rhombus = \dfrac{1}{2} \: (22 \: m \times 14 \: m)  \:  \:  \:  \:  \:  \:  \:  \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \tt : \implies \: Area \: of \: the \: rhombus = \dfrac{1}{2} \times \: 308 \: {m}^{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \tt : \implies \: Area \: of \: the \: rhombus = \dfrac{308}{2} \: {m}^{2} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \tt : \implies \: Area \: of \: the \: rhombus = { \underline{ \boxed { \mathfrak{ \pmb{154\: {m}^{2}}}}}}\: \: \: \bigstar \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:\\ \\

⠀⠀Hence, Area of the rhombus is 154 m² .

Similar questions