Find the area of a right triangle in which the perpendicular sides are 5cm and
6cm.
Answers
Answer:
Explanation:
Now, if any two sides and the angle between them are given, then the formulas to calculate the area of a triangle is given by:
Area (∆ABC) = ½ bc sin A
Area (∆ABC) = ½ ab sin C
Area (∆ABC) = ½ ca sin B
These formulas are very easy to remember and also to calculate.
For example, If, in ∆ABC, A = 30° and b = 2, c = 4 in units. Then the area will be;
Area (∆ABC) = ½ bc sin A
= ½ (2) (4) sin 30
= 4 x ½ (since sin 30 = ½)
= 2 sq.unit.
Explanation:
Now, if any two sides and the angle between them are given, then the formulas to calculate the area of a triangle is given by:
Area (∆ABC) = ½ bc sin A
Area (∆ABC) = ½ ab sin C
Area (∆ABC) = ½ ca sin B
These formulas are very easy to remember and also to calculate.
For example, If, in ∆ABC, A = 30° and b = 2, c = 4 in units. Then the area will be;
Area (∆ABC) = ½ bc sin A
= ½ (2) (4) sin 30
= 4 x ½ (since sin 30 = ½)
= 2 sq.unit.