find the area of a trapezium abcd in which ab// cd,ab=18 cm angle b=anglec=90° cd=12cm and ad=10cm.
Answers
Answered by
5
Given: ABCD is a trapezium with AB // DC. AB = 18 cm, CD = 12 cm, AD = 10 cm,∠B = ∠C = 90°
To Find: Area of trapezium.
Construction: Draw altitude DE from D on AB.
Solution:
Area of Trapezium = 1/2 ( sum of parallel sides ) * h
= 1/2 (AB +CD ) *DE
We need to find DE for this.
DE is altitude. Thus, ∆ AED is a right angled triangle.
Also, AB = 18 cm and CD = EB = 12 cm
Therefore,
AB = AE + EB
⇒ 18 = AE + 12
⇒ AE = 6 cm
Applying pythagoras theorem,
we get
H² = P²+ B²
⇒ AD² = DE² AE²
⇒ 10 ² = P ² + 6²
⇒ P ²= 100 − 36 = 64
⇒ P = √64 cm
P= 8cm
DE = 8 cm
NOW
Area of Δ = 1/2 (18 + 12 ) *8
= 30 * 4
120 cm²
To Find: Area of trapezium.
Construction: Draw altitude DE from D on AB.
Solution:
Area of Trapezium = 1/2 ( sum of parallel sides ) * h
= 1/2 (AB +CD ) *DE
We need to find DE for this.
DE is altitude. Thus, ∆ AED is a right angled triangle.
Also, AB = 18 cm and CD = EB = 12 cm
Therefore,
AB = AE + EB
⇒ 18 = AE + 12
⇒ AE = 6 cm
Applying pythagoras theorem,
we get
H² = P²+ B²
⇒ AD² = DE² AE²
⇒ 10 ² = P ² + 6²
⇒ P ²= 100 − 36 = 64
⇒ P = √64 cm
P= 8cm
DE = 8 cm
NOW
Area of Δ = 1/2 (18 + 12 ) *8
= 30 * 4
120 cm²
Similar questions