Math, asked by Sandeep543, 1 month ago

Find the area of a trapezium ABCD in which AB║DC, AB = 32cm, BC = 16cm, CD = 20cm and DA = 10cm.

Answers

Answered by DeeznutzUwU
0

       \underline{\bold{Given:}}

       ABCD \text{ is a trapezium}

       AB \parallel CD

       AB = 32 \text{ cm}

       BC = 16 \text{ cm}

       CD = 20 \text{ cm}

       AD = 10 \text{ cm}

       \underline{\bold{To -Find:}}

       \text{The area of a trapezium }ABCD

       \underline{\bold{Previous-knowledge:}}

       \text{Area of trapezium} = \dfrac{1}{2}(\text{Sum of parallel sides})(\text{Height})

       \text{Area of triangle}=\dfrac{1}{2}(\text{base)(\text{height)}}

       \text{Heron's formula} \implies \sqrt{s(s-a)(s-b)(s-c)} = \text{Area of triangle}

       \underline{\bold{Construction:}}

       \text{Draw a line }DE \text{ such that }DE \text{ is perpendicular to }AB \text{ and }E \text{ lies on } AB

       \text{Draw a line }DF \text{ such that }DF = BC \text{ and }DF \parallel BC,  F \text{ lies on }AB

       \underline{\bold{Solution:}}

       DF = BC \text{ and }DF \parallel BC \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }(\text{Construction})

\implies FBCD \text{ is a parallelogram as it has a pair of equal and parallel sides}

\implies BF = DC = 20\text{ cm}      

\implies AF = AB - BF = 12\text{ cm}

       \text{In }\triangle AFD

       \text{Applying Heron's formula}

\implies \sqrt{s(s-a)(s-b)(s-c)} = \text{Area of }\triangle

       \text{In our case:}

       a = AD = 10 \text{ cm}

       b = AF = 12 \text{ cm}

       c = DF = 16 \text{ cm}

       s = \dfrac{a+b+c}{2} = \dfrac{10 + 16 + 12}{2} = \dfrac{38}{2} = 19 \text{ cm}

\implies \text{Ar}\triangle AFD = \sqrt{19(19-10)(19-12)(19-16)}

\implies \text{Ar}\triangle AFD = \sqrt{19(9)(7)(3)}

\implies \text{Ar}\triangle AFD = \sqrt{3591}

\implies \text{Ar}\triangle AFD = 59.92 \text{ cm}^{2} = 60 \text{ cm}^{2} (\text{approx.)}

       \text{Applying area of triangle formula}

\implies \text{Ar}\triangle AFD = \dfrac12(AF)(DE)

\implies 60 = \dfrac12(12)(DE)

\implies 10 \text{ cm}= DE

       \text{Applying area of trapezium formula}

\implies\text{Ar}ABCD = \dfrac{1}{2}(AB + BC)(DE)

\implies\text{Ar}ABCD = \dfrac{1}{2}(32 + 20)(10)

\implies\text{Ar}ABCD = (52)(5)

\implies\boxed{\text{Ar}ABCD = 260 \text{ cm}^{2} \text{ }(\text{approx.})}

Attachments:
Similar questions