Math, asked by amandhaka654, 8 months ago

find the area of a triangle field whose sides are 30m, 40m and 50m. also, find the length of altitude drawn on the longest side.​

Answers

Answered by Anonymous
9

Given :-

Sides:-

  • 30 m
  • 40 m
  • 50 m

To find :-

  • Area of triangle.
  • Length of altitude drawn to the largest side.

Solution :-

By using heron's formula we will find the area of triangle.

\sf\boxed{Heron's~formula~=~\sqrt{s(s-a)(s-b)(s-c)}}

To find s :-

  \sf{s = \dfrac{a + b + c}{2} }

 \sf{ s = \dfrac{30 + 40 + 50}{2}}

 \sf{s =  \dfrac{120}{2}}

 \sf{s = 60}

 \sf{  \sqrt{60(60 - 30)(60 - 40)(60  - 50)}}  \\   =   \sf{\sqrt {60(30)(20)(10)}} \\   =  \sf{\sqrt{360000}}  \\  \sf{ = 600 \:  {m}^{2}}

  • Area of triangle = 600 metre square.

2. Length of altitude drawn to the largest side.

Largest side = AC = 50 m

As we know,

\sf\boxed{Area~of~triangle~=~\dfrac{1}{2} \times base \times height}

Put the given values.

\sf{600 = \dfrac{1}{2} \times 50 \times h}

\sf{= \dfrac{600 \times 2}{50}}

Height = 24 m

  • Length of altitude drawn to the largest side = 24 m

Figure :-

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\linethickness{0.7mm}\qbezier(1, 0)(1,0)( 3,3)\qbezier(5,0)(5, 0)(3,3)\qbezier(5,0)(1,0)(1,0)\qbezier(1,0)(1,0)(4,1.5)\put(2.8,3.2){$\sf A$}\put(2.5, - 0.3){40 m}}\put(0.5,-0.2){$\sf B$}\put(4.5,1){50 m}\put(5.1, - 0.3){$\sf C$}\put(1.1,1.8){30 m}\put(4.2, 1.5){$\sf D$}\end{picture}

Answered by Anonymous
3

Given :-

  • Sides:-

  • 30 m

  • 40 m

  • 50 m

To find :-

  • Area of triangle.

  • Length of altitude drawn to the largest side.

Solution :-

Figure :-

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\linethickness{0.7mm}\qbezier(1, 0)(1,0)( 3,3)\qbezier(5,0)(5, 0)(3,3)\qbezier(5,0)(1,0)(1,0)\qbezier(1,0)(1,0)(4,1.5)\put(2.8,3.2){$\sf A$}\put(2.5, - 0.3){40 m}}\put(0.5,-0.2){$\sf B$}\put(4.5,1){50 m}\put(5.1, - 0.3){$\sf C$}\put(1.1,1.8){30 m}\put(4.2, 1.5){$\sf D$}\end{picture}

  • By using heron's formula we will find the area of triangle.

  • \sf\boxed{Heron's~formula~=~\sqrt{s(s-a)(s-b)(s-c)}}

  • To find s :-

\sf{s = \dfrac{a + b + c}{2} }

\sf{ s = \dfrac{30 + 40 + 50}{2}}

\sf{s = \dfrac{120}{2}}

\sf{s = 60}

\begin{gathered}\sf{ \sqrt{60(60 - 30)(60 - 40)(60 - 50)}} \\ = \sf{\sqrt {60(30)(20)(10)}} \\ = \sf{\sqrt{360000}} \\ \sf{ = 600 \: {m}^{2}}\end{gathered}

  • Area of triangle = 600 metre square.

2. Length of altitude drawn to the largest side.

Largest side = AC = 50 m

  • As we know,

\sf\boxed{Area~of~triangle~=~\dfrac{1}{2} \times base \times height}

  • Put the given values.

\sf{600 = \dfrac{1}{2} \times 50 \times h}

\sf{= \dfrac{600 \times 2}{50}}

  • Height = 24 m

  • Length of altitude drawn to the largest side = 24 m
Similar questions