Math, asked by jfssyzh, 7 hours ago

Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter is 42cm.
a)14√11
b)21√11
c)35√11
d)21√11

Answers

Answered by makasiii
90

Answer:

d

Step-by-step explanation:

area of triangle √s(s -a)(s-b)(s-c)

a = 18cm

b= 10cm

semi perimeter =

s = 42 ÷ 2

s = 21 cm

p= 42 cm

a+b+c = 42

c= 42-28

c = 14 cm

replace with formula ↑

√21(21-18)(21-10)(21-14)

= √21(21)(11)

=21√11 cm²

Answered by SparklingBoy
142

Given :-

For A Triangle ;

  • First Side = 18 cm

  • Second Side = 10 cm

  • Perimeter = 42 cm

To Find :-

  • Area of the Triangle.

Solution :-

Here,

  • First Side = a = 18 cm

  • Second Side = b = 10 cm

  • Perimeter = P = 42 cm

  • Semi - Perimeter = s = \bf\dfrac{42}{2} = 21 cm

Finding Third Side :-

Let Third Side be = c

We Know,

 \rm Perimeter = Sum \: of \: All \: Sides \\

 \rm:\longmapsto42 = 18 + 10 + c \\

 \rm:\longmapsto c = 42 - 18 - 10 \\

\purple{ \large :\longmapsto \underline {\boxed{{\bf c = 14 \: cm} }}}

Finding Area :-

To Calculate Area when three sides are given we will use Heron's Formula which is :

 \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{Area = \sqrt{s(s - a)(s - b)(s - c)} }}} \\

where

  • a , b and c are sides of Triangle

  • s = Semi - Perimeter

Putting Values In Formula ;

 \small \rm Area = \sqrt{21(21 - 18)(21 - 10)(21 - 14) \: } \\

= \sqrt{21 \times 3 \times 11 \times 7 \: } \\

\purple{ \large :\longmapsto \underline {\boxed{{\bf Area=21\sqrt{11} \: cm^2} }}} \\

Hence,

\large\underline{\pink{\underline{\frak{\pmb{\text Area\:of\:\text Triangle = 21\sqrt{11} \: {cm}^{2} }}}}}

Therefore ,

\Large\underline{\green{\underline{\frak{\pmb{Option \: D \: is \: Correct}}}}}

Similar questions