Math, asked by rohitsharm553388, 3 days ago

Find the area of a triangle whose base length is 22cm and the corresponding height is 13 cm​

Answers

Answered by prabsinghsohal727
1

Answer: Base =22cm

HEIGHT =13 CM

area of triangle =1/2×base ×height

1/2×22×13

11×13

143 cm²

hence it is your answer dear

Step-by-step explanation:

Mark me as brainliest.. :)

Answered by StarFighter
5

Answer:

Given :-

  • A triangle whose base length is 22 cm and the corresponding height is 13 cm.

To Find :-

  • What is the area of a triangle.

Formula Used :-

\clubsuit Area Of Triangle Formula :

\small \bigstar \: \: \sf\boxed{\bold{\pink{Area_{(Triangle)} =\: \dfrac{1}{2} \times Base \times Height}}}\: \: \: \bigstar\\

Solution :-

Given :

  • Base Length = 22 cm
  • Height = 13 cm

According to the question by using the formula we get,

\small \implies \bf Area_{(Triangle)} =\: \dfrac{1}{2} \times Base \times Height\\

\implies \sf Area_{(Triangle)} =\: \dfrac{1}{2} \times 22 \times 13\\

\implies \sf Area_{(Triangle)} =\: \dfrac{1}{2} \times 286\\

\implies \sf Area_{(Triangle)} =\: \dfrac{1 \times 286}{2}

\implies \sf Area_{(Triangle)} =\: \dfrac{\cancel{286}}{\cancel{2}}

\implies \sf Area_{(Triangle)} =\: \dfrac{143}{1}

\implies \sf\bold{\red{Area_{(Triangle)} =\: 143\: cm^2}}\\

\therefore The area of a triangle is 143 cm² .

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

EXTRA INFORMATION :-

\clubsuit Semi-Perimeter Of Triangle Formula :

\small \bigstar \: \: \sf\boxed{\bold{\pink{Semi-Perimeter_{(Triangle)} =\: \dfrac{a + b + c}{2}}}}\: \: \: \bigstar\\

where,

  • a = First Side
  • b = Second Side
  • c = Third Side

\clubsuit Area Of Triangle by using Heron's formula :

\footnotesize \bigstar \: \: \sf\boxed{\bold{\pink{Area_{(Triangle)} =\: \sqrt{s(s - a)(s - b)(s - c)}}}}\: \: \: \bigstar\\

where,

  • s = Semi-Perimeter
  • a = First Side
  • b = Second Side
  • c = Third Side

\\

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Similar questions