Math, asked by Rachit5436, 1 year ago

Find the area of a triangle whose medians are 18 24 30

Answers

Answered by Nidhipande
1

Answer:

Step-by-step explanation:

Answered by rowboatontario
2

The area of a triangle whose medians are 18, 24, and 30 is 288.

Step-by-step explanation:

We have to find the area of a triangle whose medians are 18, 24, and 30.

Firstly, as we know that the area of a triangle with the medians given has the following formula;

 Area of a triangle =  \frac{4}{3} \times \sqrt{s(s-a)(s-b)(s-c)}

where,  s = \frac{\text{Sum of all the three medians}}{2}

So,  s = \frac{a+b+c}{2}  ⇒  s = \frac{18+24+30}{2}

                               =  \frac{72}{2}  = 36

Now, substituting the value of s in the area formula, we get;

        Area of a triangle =  \frac{4}{3} \times \sqrt{s(s-a)(s-b)(s-c)}  

                                      =  \frac{4}{3} \times \sqrt{36(36-18)(36-24)(36-30)}

                                      =  \frac{4}{3} \times \sqrt{36\times 18 \times 12 \times 6}

                                      =  \frac{4}{3} \times 216

                                      =  4 \times 72 = 288

Hence, the area of a triangle whose medians are 18, 24, 30 is 288.

Similar questions