Math, asked by harshkataria6717, 1 year ago

Find the area of a triangle whose side is 48m each

Answers

Answered by mayank190
1
by using her on,s formula , then, s - a plus b plus c/2 then,area of triangle - square root s ( s-a) ( s-b) ( s-c) where, a,b,c is the side of the given triangle
Answered by BrainlyConqueror0901
15

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=997.63\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Sides \: of \: triangle =48 cm,48 cm,48 cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that \: herons \: formula} \\ : \implies s = \frac{a + b + c}{2} \\ \\ : \implies s = \frac{48+48+ 48}{2} \\ \\ : \implies s = \frac{144}{2} \\ \\ \green{ : \implies s =72 } \\ \\ \circ\: \bold{Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)} } \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{72(72- 48)(72-48)(72- 48)} \\ \\ : \implies \text{Area \: of \: triangle =}\sqrt{72\times 24\times 24\times 24} \\ \\ : \implies \text{Area \: of \: triangle =} \sqrt{995328} \\ \\ : \implies \text{Area \: of \: triangle =}997.63\: cm^{2} \\ \\ \ \green{\therefore \text{Area \: of \: triangle = 997.63\: {cm}}^{2} }

 \bold{Another \: method} \\   : \implies  \text{Area \: of \: equilateral \: triangle =}  \frac{ \sqrt{3} }{4}  {side}^{2}  \\   \\  :  \implies \text{Area \: of \: equilateral \: triangle =}  \frac{ \sqrt{3} }{4}  \times  {48}^{2}  \\  \\ :  \implies \text{Area \: of \: equilateral \: triangle =}  \frac{ \sqrt{3}  \times 2304}{4}  \\  \\ :  \implies \text{Area \: of \: equilateral \: triangle =}  {1.732 \times 576} \\  \\  \green{:  \implies \text{Area \: of \: equilateral \: triangle =} 997.63 {cm}^{2} }

Similar questions