Math, asked by rajpalnamberdar6755, 1 year ago

Find the area of a triangle whose sides are 120cm, 150cm and 200 cm

Answers

Answered by Anonymous
10
\bold{\underline{Hello  Here is You're Answer}}



\bold{\huge{\underline{ANSWER:-}}}



\bold{\fbox{\underline{Define Semi-Perimeter of Triangle}}}



Let the sides of Semi-Perimeter of Triangle which are Given below;



• a=120 cm


•b=150 cm


•c=200 cm

___________________

\bold{\underline{Semi-perimeter of Triangle=120+150+200/2=470/2=]235}}


Semiperimeter of ∆=235cm²


\bold{\fbox{\underline{ Here, Using heron's Formula}}}



 \bold{Area \: of \: \: Triangle} \implies \\ \\ \implies \bold{\sqrt{s(s - a)(s - b)(s - c)}} \\ \\ \\ \implies \bold{\sqrt{235(235 - 120)(235- 150)(235- 200)}} \\ \\ \\ \implies \bold{\sqrt{235 \times (115)(85)(35)}} \\ \\ \\ \implies \bold{ \sqrt{8399375}} \\ \\ \\ \huge{ \implies8966.57 {cm}^{2}} \\ \\ \\ \\ \lll \bold{approxmately = 8967 {cm}^{2}} \lll



\bold{\underline{CONCLUSION:- Area of Triangle = 8967{cm}^{3} }}

Answered by Anonymous
3

\huge{\underline{\underline{\red{♡Solution→}}}}

__________________________

\bold{\huge{\underline{\underline{\rm{ Given :}}}}}

Sides -

a = 200 cm

a = 200 cm b = 150 cm

c = 120 cm

\bold{\huge{\underline{\underline{\rm{ To\:Find :}}}}}

Area of Triangle .

__________________________

area(a) =  \sqrt{p(p - a)(p - b)(p - c)}

Where P is half perimeter.

p =  \frac{a + b + c}{2}

__________________________

\purple{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

First find out the value of P.

p =  \frac{200+150+120}{2}  \\ p =  \frac{470}{2}

p = 235

Now Area is ,

a =  \sqrt{235(235 - 200)(235- 150)(235 - 120)}  \\ a =  \sqrt{235 \times 35 \times 85 \times 115}

a =  \sqrt{80,399,375}

\boxed{a = 8,966.56986}

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions