Math, asked by dusajprabhleen, 11 months ago

find the area of a triangle whose sides are 30cm, 24cm, 18cm. also,find the length of the altitude corresponding to the smallest side of the triangle

Answers

Answered by gourirupa
3

Answer: 216 cm²

Step-by-step explanation:

Heron's Formula is used to find area of triangles where the length of 3 sides are known .

Heron's Formula :- \sqrt{x(x - a)(x - b)(x - c)} , where x is the semi-perimeter of the triangle , and a,b,c are the sides of the triangle .

In this case we have x = (30 + 24 + 18)/2 = 36 cm .

Hence Area of the Triangle = \sqrt{36(36 - 30)(36 - 24)(36 - 18)}

                                             => \sqrt{36 * 6 * 12 * 18 }

                                             => \sqrt{36 * 1296}

                                             => 6 * 36 = 216 cm² .

Hence Area of the Triangle = 216 cm² .

Similar questions