Math, asked by BrainlyHulk, 1 year ago

10 points || Inverse Trigonometry

if
( \tan {}^{ - 1} (x)  ){}^{2}  +  (\cot {}^{ - 1} (x) ) {}^{2} =  \frac{5\pi {}^{2} }{8}
, Find x​

Answers

Answered by Anonymous
30

SOLUTION ☺️

 =  > ( \tan {}^{ - 1} x) {}^{2}  + ( \cot {}^{ - 1} x) {}^{2}  =  \frac{5\pi {}^{2} }{8}  \\  =  > ( \tan {}^{ - 1} x +  \cot {}^{ - 1} x) {}^{2}  + 2 \tan {}^{ - 1}x \cot {}^{ - 1} x =  \frac{5\pi {}^{2} }{8} \\  =  >  (\frac{\pi}{2} ) {}^{2}  + 2 \tan {}^{ - 1} x(\pi -  \tan {}^{ - 1} x) =  \frac{5\pi {}^{2} }{8}   \\  =  >  \frac{\pi {}^{2} }{4}  + 2\pi \tan {}^{ - 1} x - 2( \tan {}^{ - 1} x) {}^{2}  =  \frac{5\pi {}^{2} }{8}  \\  =  > 2 \tan {}^{ - 1} x - 2( \tan {}^{ - 1} x) {}^{2}  +  \frac{\pi {}^{2} }{4}  -  \frac{5\pi {}^{2} }{8}  = 0 \\  =  > 2( \tan {}^{ - 1} x) {}^{2}  - 2\pi \tan {}^{ - 1}x -  \frac{\pi {}^{2} }{4}   +  \frac{5\pi {}^{2} }{8}  = 0 \\  =  > 2( \tan {}^{ - 1} x) {}^{2}  - 2\pi \tan {}^{ - 1} x +  \frac{5\pi {}^{2} - 2\pi {}^{2}  }{8}  = 0 \\  =  > 2( \tan {}^{ - 1} x) {}^{2}  - 2\pi \tan {}^{ - 1}  x +  \frac{3\pi {}^{2} }{8}  = 0 \\  =  > solving \: the \: quadratic \: equation \\  \\  =  >  \tan {}^{ - 1} x =  \frac{2\pi  + -  \sqrt{4\pi {}^{2}  - 4  \times 2  \times  \frac{3\pi {}^{2} }{8} } }{2 \times 2 }   \\  =  >  \tan {}^{ - 1}x =  \frac{2\pi +  - \sqrt{4 \pi {}^{2}  -3\pi {}^{2}  {} }   }{4}   \\  =  >  \tan {}^{ - 1} x =  \frac{2\pi +  - \pi}{4}  \\  =  >  \tan {}^{ - 1} x =  \frac{2\pi + \pi}{4}  \: or \:  \tan {}^{ - 1} x =  \frac{2\pi - \pi}{4}  \\   =  >  \tan {}^{  -  1} x =  \frac{3\pi}{4}  \: or \:  \tan {}^{ - 1}   =  \frac{\pi}{4}  \\  =  > x = tan \frac{3\pi}{4}  \: or \: x = tan \frac{\pi}{4}  \\  =  > x = 0 \: and \: 1

hope it helps ✔️❣️


BrainlyHulk: Just 1
BrainlyHulk: 0 isnt there
BrainlyHulk: btw your 2nd and 3rd step has mistake
BrainlyHulk: see the other answer!! it is correct
Answered by KRAISH
4

Answer in attachment!!!

Attachments:
Similar questions