Math, asked by Sukhantinsweeti, 1 year ago

Find the area of a triangle whose sides are respectively 150 cm,120cm and 200 cm.

Answers

Answered by kumarysunil
1
using Heron's Formula = Area = √p(p−a)(p−b)(p−c)
p = 
a+b+c / 2
   = 120+150+200 / 2 =235
A = 
√235 (235-120) (235-150) (235-200)
   =  
√235 (115) (85) (35)
   =  
√235 x 342125
   = 
 8966.56985697 ( by rounding of )
A = 
 8966.57 cm²
Answered by Anonymous
2

\huge{\underline{\underline{\red{♡Solution→}}}}

__________________________

\bold{\huge{\underline{\underline{\rm{ Given :}}}}}

Sides -

a = 200 cm

a = 200 cm b = 150 cm

a = 200 cm b = 150 cm c = 120 cm

\bold{\huge{\underline{\underline{\rm{ To\:Find :}}}}}

Area of Triangle .

__________________________

The herons formula to find Area of Triangle is :

area(a) =  \sqrt{p(p - a)(p - b)(p - c)}

Where P is half perimeter.

p =  \frac{a + b + c}{2}

__________________________

\purple{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

First find out the value of P.

p =  \frac{200+150+120}{2}  \\ p =  \frac{470}{2}

p = 235

Now Area is ,

a =  \sqrt{235(235 - 200)(235- 150)(235 - 120)}  \\ a =  \sqrt{235 \times 35 \times 85 \times 115}

a =  \sqrt{80,399,375}

\boxed{\red{a = 8,966.56986}}

__________________________

───── ❝ TheEnforceR ❞ ─────

Mark as Brainliest !! ✨✨

Similar questions