Math, asked by sujaypagadala7553, 1 year ago

Find the area of a triangle whose sides measure 13cm , 14cm and 15cm

Answers

Answered by aaravshrivastwa
17

Given,

=> First Side = 13 cm

=> Second Side = 14 cm

=> Third Side = 15 cm

As it is an Isosceles Triangle.

=> S = a+b+c/2 = 13+14+15/2 = 42/2 = 21 cm

 =  > area =  \sqrt{s(s - a)(s - b)(s - c)}

 =  > area =  \sqrt{21(21 - 13)(21 - 14)(21 - 15)}

 =  > area =  \sqrt{21\times 8 \times 7 \times 6}

 =  > area =  \sqrt{7\times3\times2 \times 2 \times 2 \times 7 \times 3 \times 2}

 =  > area = 2 \times 2\times7 \times 3}

 =  > area = 84  \:  \:  {cm}^{2}

Be Brainly

Answered by BrainlyKing5
18

\underline{\textbf{Question...}}


To Find Area Of A Triangle Whose Sides Measures 13cm , 14cm and 15cm


\underline{\textbf{Given...}}


Measure Of \implies


\textbf{First Side ( a ) = 13cm }


\textbf{Second Side ( b ) = 14cm }


\textbf{Third Side ( c ) = 15cm }


So Now Let's Move For Solution ...


\underline{\textbf{Solution..}}


Let The Triangle = ∆ABC


By \underline{\textbf{Heron's Formula}} We Have ➡️


\boxed{\mathbf{ ar( \,\triangle \,ABC )\: = \: \sqrt{s(s - a)(s - b)(s - c)} }}


Where


\mathbf{S \:= \:Semi \,Perimeter = \Large{\frac{\, a \,+\, b\,+\, c}{2}}}


That ..


\mathbf{S\: =\: (13\:+ \:14 \:+ \:15) \:/ \:2\: \longrightarrow \: 42cm \: / \: 2 }


 \mathbf{ \therefore\:S\: = \:21cm }


So Now Putting Values In The Heron's Formula We Have ➡️


\mathbf{ ar( \,\triangle \,ABC )\: = \: \sqrt{21cm(21 - 13)(21 - 14)(21 - 15)}}


\implies \mathbf{ \: \sqrt{21\:(8)\:(7)\:(6)}}


Now Breaking All Terms Into Smaller Parts ---


\implies  \mathbf{ \sqrt{7 \:\times \:3(2\:\times\: 2 \times\: 2\:)(\:7\:)(2\: \times 3\: )}}


\implies \mathbf{ \sqrt{7 \times 3 \times 2\times 2 \times 2 \times \: 7 \times \: 2 \times 3 }}


\implies  \mathbf{\sqrt{ {(7)}^{2}\: \times \:{(3)}^{2}\: \times\: {(2)}^{2} \:\times\: {(2)}^{2} }}


Now Taking Out The Perfect Squares We Have ➡️


\mathbf{ar( \triangle \: ABC \: ) \: = \: 7 \times 3 \times 2 \times 2}


Therefore


\mathbf{ar( \triangle \: ABC \: ) \: = \: 84{cm}^{2}}


\underline{\textbf{Hence The Required Answer Is...}}


\boxed{\mathbf{ \: 84{cm}^{2}}}


______________⚛️______________

Similar questions