Math, asked by swaraj5584, 4 months ago

Find the area of a triangular field with sides 55m, 60m and 65m. Find the cost of

laying the grass in the same field at the rate of Rs.8 per m2

.​

Answers

Answered by mathdude500
65

Concept Used

  • Heron's formula

Let us suppose that three sides be represented as

\begin{gathered}\begin{gathered}\bf \: sides \: are \:  - \begin{cases} &\sf{a \:  =  \: 55} \\ &\sf{b \:  =  \: 60}\\ &\sf{c \:  =  \: 65} \end{cases}\end{gathered}\end{gathered}

Now,

  • Semi perimeter is given by

 \bigstar \:  \: \underline{\boxed{\sf Semi \ perimeter \: (s)=\dfrac{1}{2}(a \:  +  \: b \:  +  \: c)}}

 \rm :  \implies \:s \:  =  \: \dfrac{55 + 60 + 65}{2}

 \rm :  \implies \:s \:  =  \: \dfrac{180}{2}

  \boxed{ \pink{\rm :  \implies \:s \:  =  \: 90 \:m \:  }}

Now,

  • Area of triangle is given by

\underline{\boxed{\bf Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)} }}

 \rm :  \implies \:Area  =  \sqrt{90(90 - 55)(90 - 60)(90 - 65)}

 \rm :  \implies \:Area  =  \sqrt{90 \times 35 \times 30 \times 25}

 \rm :  \implies \:Area  =  \sqrt{3 \times 3 \times 10 \times 3 \times 10 \times 5 \times 5 \times 7 \times 5}

 \rm :  \implies \:Area  = 3 \times 10 \times 5 \sqrt{3 \times 5 \times 7}

 \rm :  \implies \:Area  = 150 \sqrt{105}  \:  {m}^{2}

 \boxed{ \pink{ \rm :  \implies \:Area  \:  =  \: 1537.04 \:  {m}^{2} }}

Now to find the Cost of laying grass in the field.

 \rm :  \implies  \: Cost  \: of \:  laying \:  grass  \: 1  \:  {m}^{2}  \: is \: Rs 8

 \rm :  \implies  \: Cost  \: of \:  laying \:  grass  \: 1537.04  \:  {m}^{2}  \:  =  \: Rs  \: 8 \times 1537.04

 \boxed{ \pink{ \ \rm :  \implies \:Cost \:  is  \: Rs  \: 12296 \: .32}}

Answered by shivanimahajan1212
6

Answer:

Heron's formula

Let us suppose that three sides be represented as

\begin{gathered}\begin{gathered}\begin{gathered}\bf \: sides \: are \: - \begin{cases} &\sf{a \: = \: 55} \\ &\sf{b \: = \: 60}\\ &\sf{c \: = \: 65} \end{cases}\end{gathered}\end{gathered}\end{gathered}

sidesare−

a=55

b=60

c=65

Now,

Semi perimeter is given by

\bigstar \: \: \underline{\boxed{\sf Semi \ perimeter \: (s)=\dfrac{1}{2}(a \: + \: b \: + \: c)}}★

Semi perimeter(s)=

2

1

(a+b+c)

\rm : \implies \:s \: = \: \dfrac{55 + 60 + 65}{2}:⟹s=

2

55+60+65

\rm : \implies \:s \: = \: \dfrac{180}{2}:⟹s=

2

180

\boxed{ \pink{\rm : \implies \:s \: = \: 90 \:m \: }}

:⟹s=90m

Now,

Area of triangle is given by

\underline{\boxed{\bf Area \ of \ triangle=\sqrt{s(s-a)(s-b)(s-c)} }}

Area of triangle=

s(s−a)(s−b)(s−c)

\rm : \implies \:Area = \sqrt{90(90 - 55)(90 - 60)(90 - 65)}:⟹Area=

90(90−55)(90−60)(90−65)

\rm : \implies \:Area = \sqrt{90 \times 35 \times 30 \times 25}:⟹Area=

90×35×30×25

\rm : \implies \:Area = \sqrt{3 \times 3 \times 10 \times 3 \times 10 \times 5 \times 5 \times 7 \times 5}:⟹Area=

3×3×10×3×10×5×5×7×5

\rm : \implies \:Area = 3 \times 10 \times 5 \sqrt{3 \times 5 \times 7}:⟹Area=3×10×5

3×5×7

\rm : \implies \:Area = 150 \sqrt{105} \: {m}^{2}:⟹Area=150

105

m

2

\boxed{ \pink{ \rm : \implies \:Area \: = \: 1537.04 \: {m}^{2} }}

:⟹Area=1537.04m

2

Now to find the Cost of laying grass in the field.

\rm : \implies \: Cost \: of \: laying \: grass \: 1 \: {m}^{2} \: is \: Rs 8:⟹Costoflayinggrass1m

2

isRs8

\rm : \implies \: Cost \: of \: laying \: grass \: 1537.04 \: {m}^{2} \: = \: Rs \: 8 \times 1537.04:⟹Costoflayinggrass1537.04m

2

=Rs8×1537.04

\boxed{ \pink{ \ \rm : \implies \:Cost \: is \: Rs \: 12296 \: .32}}

:⟹CostisRs12296.32

Similar questions