Math, asked by OmSagar075, 1 year ago

Find the area of an equilateral triangle inscribed in the circle x²+y²-6x+2y-15=0

Answers

Answered by kohliadit88
2

Given equation of circle is: 


x2 + y2 - 6x + 2y - 15 = 0


Centre O = (3, -1)


radius r = √{32 + (-1)2 -(-15)} = √{9 + 1 + 15 } = √25 = 5 


Let ABC is an equilateral triangle inscribed in the give circle, then its altitude AD passes through the cneter of the circle


and D is the mid-point of BC


Also ∠OBD = 60


From right angle triangle OBD,


     sin 60 = BD/OB


=> √3/2 = BD/r


=> BD = r*√3/2


Also, BC = 2*BD = 2*r*√3/2 = √3r


Now, area of the triangle ABC = √3/4 * a2    {a is the side of the triangle ABC} 


                                         = √3/4 * (√3r)2


                                         = 3√3/4 * r2


                                         = 3√3/4 * 52


                                         = 3√3/4 * 25


                                         = 75√3/4 square unit



Attachments:
Similar questions