Math, asked by Shashankkatoch, 6 months ago

find the area of an equilateral triangle whose area is 20√3 cm^2​

Answers

Answered by Anonymous
1

The question must be:

find the sides of an equilateral triangle whose area is 20√3 cm^2.

Answer :

Given:

area of an equilateral triangle=20√3 cm².

to find :

side of equilateral triangle

formulae :

area of an equilateral triangle(A)=(√3/4)a²

here, a=length of sides

solution :

area \: of \:  an \: equilateral \: triangle =  (\frac{ \sqrt{3} }{4} ) {a}^{2}  \\  \\  \implies20 \sqrt{3 }  =  \frac{ \sqrt{3} }{4}  {a}^{2}  \\  \\  \implies20 \cancel{ \sqrt{3} } =  \frac{ \cancel{ \sqrt{3} }}{4}  {a}^{2}  \\  \\  \implies \:  {a}^{2}  = 80 \\  \\  \implies \: a =  \sqrt{80}  \\  \\  \implies \: a = 4  \sqrt{5}  \: cm \\  \\  \\  \\ \underline{\boxed{\sf{ length \: of \: side \: of \: given \: equilatreal \: triangle = 4 \sqrt{5 \: cm} }}}

swipe left for complete answer

Answered by tarracharan
0

\underline{\bold{Question:}}

\sf{Find\: the\: side \:of \:an \:equilateral\: triangle \:whose}\sf{area\: is \:20\sqrt{3}cm²}

\underline{\bold{Solution:}}

\bold{\red{➾\:Area = \dfrac{1}{2}×base×height}}

\bold{➾\:20\sqrt{3} = \dfrac{1}{2}×a×\sqrt{a²-\dfrac{a²}{4}}}

\bold{➾\:40\cancel{\sqrt{3}} =a×\dfrac{\cancel{\sqrt{3}}a}{2}}

\bold{➾\:80 =a²}

\bold{➾\:a = 4\sqrt{5}cm}

Attachments:
Similar questions