Math, asked by dolashenisha, 5 months ago

Find the area of an equilateral triangle whose
perimeter is 36 cm. Also, find its height.​

Answers

Answered by Anonymous
3

Answer:

 \huge\tt{\red{} \green{A} \purple{N} \pink{S} \blue{W} \orange{E} \red{R}}

Perimeter = 3x=36 cm

x=12 cm

In triangle ABD by pythagoras theorem

 {x}^{2}  = ( \frac{x}{2})^{2}  +  {ad}^{2}

 {ad}^{2}  =  \frac{3x}{4}  ^{2}

ad =   \sqrt{ \frac{3}{2} x}

height =   \sqrt{ \frac{3}{2} }   \times 12 = 6 \sqrt{3}

area =  \frac{1}{2}  \times base \times height

 \frac{1}{2}  \times x \times  \sqrt \frac{3}{2} {x}

 \sqrt \frac{3}{4} { {x}^{2} }  =  \sqrt \frac{3}{4}  \times  ({12})^{2}

area = 36 \sqrt{ {3cm}^{2} }

≻───── ⋆✩⋆ ─────≺

Similar questions