Math, asked by dniktugnait2006, 1 month ago

Find the area of an isosceles triangle having the base 2cm and length of one of the equal sides 4cm

Answers

Answered by Yugant1913
55

 \pink \bigstar\sf\large \red{\underbrace\frak{ \blue{ \underline{ \purple{Given }}}} }

  • Isosceles triangle having the base = 2cm and
  • Length of the one equal sides = 4cm

 \pink \bigstar\sf\large \red{\underbrace\frak{ \blue{ \underline{ \purple{To  \: find }}}} }

  • Area of isosceles triangle

 \pink \bigstar\sf\large \red{\underbrace\frak{ \blue{ \underline{ \purple{need  \: formula }}}} }

  • Pythagoras Theorem
  •  \sf \: area \: of \: tringle \:  =  \frac{1}{2}(base \:  \times height) \\
  • Alternate method

 \pink \bigstar\sf\large \red{\underbrace\frak{ \blue{ \underline{ \purple{Solution }}}} }

Let ABC be an isosceles triangle in which

  • AB = AC = 4cm ( in isosceles triangle two side are equal so, AB = AC)
  • BC = 2cm

In right angle triangle ADB,

 \: \sf\longmapsto  \qquad \: AB^2 = AD^2+ BD^2 \qquad\qquad( By Pythagoras Theorem)  \\   \\ \sf\longmapsto  \qquad \: (4)^2 = AD^2+ (1)^2 \\  \\ \: \sf\longmapsto  \qquad \: 16 = AD^2+ 1 \\  \\ \: \sf\longmapsto  \qquad \: AD^2 = 16 - 1 \\  \\ \sf\longmapsto  \qquad \: AD^2 =15 \\  \\ \sf\longmapsto  \qquad  \red{\: AD = \sqrt{15} \: cm }

Taking positive square root because length is always positive

_________________________

Now we find area of triangle

Formula  \sf \: area \: of \: triangle \:  =  \frac{1}{2}  \times (base \times height) \\

Putting values in formals

   \sf \: area \: of \: triangle \:  =  \frac{1}{2}   \times AC × BC \ \:  \\  \\ \sf \: area \: of \: triangle \:  =  \frac{1}{ \cancel2}  \times \cancel{2} \times \:  \sqrt{15}   \\  \\\sf \: area \: of \: triangle \:  =  1 \times  \sqrt{15}   \\  \\ \sf \: area \: of \: triangle \:  =   \sqrt{15}  \: cm

________________________

Alternate method

We know that

Area of an isosceles triangle =  \sf \:  \frac{a}{4}  \sqrt{4 {b}^{2}  -  {a}^{2} }  \\

Where, b the length of equal and a is the length of the base

Hence, the length of the side be b = 4cm and a = 2cm

 \sf\longmapsto Area \:  of \:  isosceles \:  triangle  =  \frac{\cancel2 \sqrt{4 {(4)}^{2}  - 4} }{\cancel4}  \\  \\  \sf\longmapsto Area \:  of \:  isosceles \:  triangle  =  \frac{ \sqrt{64 - 4} }{2}  \\  \\  \sf\longmapsto Area \:  of \:  isosceles \:  triangle  =  \frac{ \sqrt{60} }{2}  \\  \\  \sf\longmapsto Area \:  of \:  isosceles \:  triangle  =  \frac{\cancel 2  \sqrt{15} } { \cancel2}  \\  \\  \sf\longmapsto Area \:  of \:  isosceles \:  triangle =   \sqrt{15}  \: cm {}^{2}

Therefore, the area isosceles triangle be √15 cm²

Attachments:
Answered by tadepallisrikar11
1

Answer:

Answer is square root 15...

Step-by-step explanation:

semiperimeter=(4+4+2)/2=5cm

root 5(5-4)(5-4)(5-2)

root 5*1*1*3

root 5*3

root 15 square cm...

Thank you

Similar questions