Find the area of cross section indicated by shaded region of following prisms (a) cm 20cm 16 cm 16 cm
Answers
Answered by
0
Answer:
Given AC=24cm,BC=17cm
⇒ ∠ACB=90
o
[ Angle inscribe in semicircle ]
∴ △ACB is right angled triangle.
⇒ (AB)
2
=(AC)
2
+(BC)
2
[ By Pythagoras theorem ]
⇒ (AB)
2
=(24)
2
+(10)
2
⇒ (AB)
2
=576+100
⇒ (AB)
2
=676
∴ AB=26cm
∴ Radius of circle (r)=
2
AB
=
2
26
=13,cm
⇒ Area of circle =πr
2
=3.14×(13)
2
∴ Area of circle =3.14×169=530.66cm
2
⇒ Area of semicircle =
2
530.66
=265.33cm
2
⇒ Area of △ABC=
2
1
×AC×BC
⇒ Area of △ABC=
2
1
×24×10
∴ Area of △ABC=120cm
2
⇒ Area of shaded region = Area of circle - ( Area of semicircle +Area of △ABC )
⇒ Area of shaded region =530.66−(265.33+120)
∴ Area of shaded region =530.66−385.33=145.33cm
2
Similar questions