Math, asked by kaviyagmailcom, 5 months ago

Find the area of equilateral triangle whose perimeter is 180 cm with explanation

Answers

Answered by EliteSoul
10

Given :

Perimeter of equilateral triangle = 180 cm

To find :

Area of triangle.

Solution :

Let the side of equilateral triangle be "a" cm.

Perimeter of equilateral triangle = 3 * side

So atq,

⇒ 3a = 180

⇒ a = 180/3

a = 60 cm.

Now, area of equilateral Δ = √3/4 a²

∴ Area of equilateral Δ = √3/4 * (60)²

                                       = √3/4 * 3600

                                       = 1558.846 cm²

Therefore,

Area of equilateral triangle = 1558.846 cm²


BrainlyHero420: Perfect Answer :)
EliteSoul: Thanks :)
BrainlyPopularman: Nice bro :)
EliteSoul: Thanks :D
RockingStarPratheek: Awesome Answer Bro :)
Answered by EliteZeal
161

\underline{\underline{\huge{\gray{\tt{\textbf Answer :-}}}}}

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Given :-}}}}

 \:\:

  • Perimeter of equilateral triangle is 180 cm

 \:\:

\sf\large\bold{\orange{\underline{\blue{ To \: Find :-}}}}

 \:\:

  • Area of equilateral triangle

 \:\:

\sf\large\bold{\orange{\underline{\blue{ Solution :-}}}}

 \:\:

We know that

 \:\:

\underline{ \underline{\bold{\texttt{Perimeter of equilateral triangle :}}}}

 \:\:

: ➜ P = 3a ⚊⚊⚊⚊ ⓶

 \:\:

Where ,

 \:\:

  • P = Perimeter of equilateral triangle

  • a = Side of equilateral triangle

 \:\:

\underline{ \underline{\bold{\texttt{Perimeter of given equilateral triangle :}}}}

 \:\:

  • P = 180 cm

  • a = a

 \:\:

Putting the above values in ⓵

 \:\:

: ➜ P = 3a

 \:\:

: ➜ 180 = 3a

 \:\:

: ➜  \sf a = \dfrac { 180 } { 3 }

 \:\:

: ➜ a = 60 cm

 \:\:

  • Hence the side of equilateral triangle is 60 cm

 \:\:

━━━━━━━━━━━━━━━━━━━━━━━━━

 \:\:

We know that ,

 \:\:

\underline{ \underline{\bold{\texttt{Area of equilateral triangle :}}}}

 \:\:

 \bf \dfrac { \sqrt 3 } { 4 } \times a ^2 ⚊⚊⚊⚊ ⓶

 \:\:

Where ,

 \:\:

  • a = Side of triangle

 \:\:

\underline{ \underline{\bold{\texttt{Area of given equilateral triangle :}}}}

 \:\:

  • a = 60 cm

 \:\:

Putting above value in ⓶

 \:\:

: ➜  \sf \dfrac { \sqrt 3 } { 4 } \times a ^2

 \:\:

: ➜  \sf \dfrac { \sqrt 3 } { 4 } \times (60)^2

 \:\:

: ➜  \sf \dfrac { \sqrt 3 } { 4 } \times 60 \times 60

 \:\:

: ➜  \sf \sqrt 3  \times 15 \times 60

 \:\:

: ➜  \sf \sqrt 3  \times 900

 \:\:

: : ➨ 1558.84 sq. cm

 \:\:

  • Hence the area of equilateral triangle is 900√3 sq. cm. or 1558.84 sq. cm

Anonymous: osm !
Anonymous: Fantastic !!
EliteZeal: thanks
Similar questions
Math, 5 months ago