Math, asked by rekhabr81, 1 month ago

Find the area of following diagram​

Attachments:

Answers

Answered by mathdude500
2

Formula Used :-

\boxed{\red{\sf\:Area_{(rectangle)} = Length \times Breadth}}

\boxed{\red{\sf\:Area_{(trapezium)} = \dfrac{1}{2}(sum \: of \parallel \: sides) \times \: distance}}

Solution :-

The given figure consists of 3 figures.

Figure 1, is a trapezium whose

  • Parallel sides are 8 cm and 12 cm

  • Distance between parallel sides is 10 cm

So,

\rm :\longmapsto\:Area_{(figure \: 1)} \:  =  \: Area_{(trapezium)}

\rm :\longmapsto\:Area_{(figure \: 1)} \: =  \: \dfrac{1}{2}  \times (8 + 12) \times 10

\rm :\longmapsto\:Area_{(figure \: 1)} \: =  \:  20 \times 5

\rm :\longmapsto\:Area_{(figure \: 1)} \: =  \:  100 \:  {cm}^{2}

Figure 2 is a rectangle of dimensions

  • Length = 20 cm

  • Breadth = 8 cm

Thus,

\rm :\longmapsto\:Area_{(figure \: 2)} \: =  \: Area_{(rectangle)}

\rm :\longmapsto\:Area_{(figure \: 2)} \: =  \: 20 \times 8

\rm :\longmapsto\:Area_{(figure \: 2)} \: =  \: 160 \:  {cm}^{2}

Figure 3. consist of a trapezium whose

  • Parallel sides are 8 cm and 14 cm

  • Distance between parallel sides is 12 cm

So,

\rm :\longmapsto\:Area_{(figure \: 3)} \: =  \: Area_{(trapezium)}

\rm :\longmapsto\:Area_{(figure \: 3)} \: =  \: \dfrac{1}{2}  \times (14 + 8) \times 12

\rm :\longmapsto\:Area_{(figure \: 3)} \: =  \:  (14 + 8) \times 6

\rm :\longmapsto\:Area_{(figure \: 3)} \: =  \:  22\times 6

\rm :\longmapsto\:Area_{(figure \: 3)} \: =  \: 132 \:  {cm}^{2}

Therefore,

  • The area of whole figure is

\rm :\longmapsto\:Area_{(figure)} = Area_{(fig1)}+Area_{(fig2)}+Area_{(fig3)}

\rm :\longmapsto\:Area_{(figure)} \: = 100 + 160 + 132

\bf :\longmapsto\:Area_{(figure)} \: = 392 \:  {cm}^{2}

Additional Information :-

\boxed{\red{\sf\:Area_{(square)} =  {(side)}^{2}}}

\boxed{\red{\sf\:Area_{(square)} = \dfrac{1}{2}  {(diagonal)}^{2}}}

\boxed{\red{\sf\:Perimeter_{(rectangle)} = 2(Length + Breadth)}}

\boxed{\red{\sf\:Perimeter_{(square)} = 4 \times side}}

\boxed{\red{\sf\:Perimeter_{(rhombus)} = 4 \times side}}

\boxed{\red{\sf\:Area_{(circle)} = \pi \:  {r}^{2}}}

\boxed{\red{\sf\:Perimeter_{(circle)} = 2\pi \: r}}

Similar questions
Math, 8 months ago