Math, asked by shauryabaranwal7874, 2 months ago

Find the area of isosceles triangle whose equal side is 6cm,6cm and 8cm

Answers

Answered by Anonymous
9

AnswEr-:

 \frak{\bf{\pink {Given \:\: -:}}} \begin{cases} \sf{The\: \:\:first\:side\:of\:the\:isosceles \:triangle \: \:is\:= \frak{6\:cm}} & \\\\ \sf{The\: \:\:Second \:side\:of\:the\:isosceles \:triangle \: \:is\:= \:=\:\frak{6\:cm}}& \\\\ \sf{The\: \:\:Third \:side\:of\:the\:isosceles \:triangle \: \:is\:= \:=\:\frak{8\:cm}}\end{cases} \\\\

\frak{\bf{\pink{To\:Find \:-: }}}\:\:\sf{ The\:Area\:of\:Isosceles \:Triangle \:.}\\\\

\mathrm {\bf{ Solution \:of\:Question \:-:}}\\

_____________________________________________

\qquad \quad \sf{\bf{ Finding\:Semi-Perimeter\:(S) \:-:}}\\

  • \boxed {\mathrm {\pink{ Semiperimeter(S) = \dfrac{ First \:Side(A) + Second \:Side\:(B) + Third\:SideC) }{2}}}}\\

\qquad \quad \sf{\underline {\star{  Now \:By\:Putting \:the \:Given \:Values\:-:}}}\\

\qquad \quad \qquad \quad \longmapsto {\mathrm {  Semi-Perimeter\:(S) = \dfrac{6 + 6 + 8 }{2}   }}\\

\qquad \quad \qquad \quad \longmapsto {\mathrm {  Semi-Perimeter\:(S) = \dfrac{12+ 8 }{2}   }}\\

\qquad \quad \qquad \quad \longmapsto {\mathrm {  Semi-Perimeter\:(S) = \dfrac{20 }{2}   }}\\

\qquad \quad \qquad \quad \longmapsto {\mathrm {  Semi-Perimeter\:(S) = \dfrac{\cancel {20} }{\cancel {2}}   }}\\

\qquad \quad \qquad \quad \underline {\boxed{\pink{\mathrm {  Semi-Perimeter \: (S) \:  =  10cm }}}}\\

Therefore,

 \dag\:\: {\underline{\pink{\mathrm {  Semi-Perimeter \: (S) \:of\:Isosceles \;Triangle =  10cm }}}}\\

___________________________________________

\qquad \quad \sf{\bf{ Finding\:Area \:-:}}\\

  • \boxed {\mathrm {\pink{ Area =  \sqrt{ s(s-a)(s-b)(s-c)}  }}}\\

 \frak{\bf{\pink {Here \:\: -:}}} \begin{cases} \sf{The\: \:\:first\:side\:of\:the\:isosceles \:triangle \: \:is\:(a)\:= \frak{6\:cm}} & \\\\ \sf{The\: \:\:Second \:side\:of\:the\:isosceles \:triangle \: \:is\:(b)\:= \:=\:\frak{6\:cm}}& \\\\ \sf{The\: \:\:Third \:side\:of\:the\:isosceles \:triangle \: \:is\:(c)= \:=\:\frak{8\:cm}}& \\\\ \sf{The\: \:\:Semi-Perimeter\:of\:the\:isosceles \:triangle \: \:is\:(s)= \:=\:\frak{10\:cm}}\end{cases} \\\\

\qquad \quad \sf{\underline {\star{  Now \:By\:Putting \:the \:Given \:Values\:-:}}}\\

\qquad \quad \qquad \quad \longmapsto {\mathrm {  Area = \sqrt{10 (10-6)(10-6)(10-8) }   }}\\

\qquad \quad \qquad \quad \longmapsto {\mathrm {  Area = \sqrt{10 \times 4 \times 4 \times 2  }   }}\\

\qquad \quad \qquad \quad \longmapsto {\mathrm {  Area = \sqrt{5 \times 2\times 2 \times 2  \times 2\times 2  \times 2  }   }}\\

\qquad \quad \qquad \quad \longmapsto {\mathrm {  Area = \sqrt{5 \times 2^{2} \times 2^{2} \times 2^{2}   }   }}\\

\sf{\bf{ \sqrt{a \times y^{2}} = \sqrt[y]{a}}}\\

\qquad \quad \qquad \quad \longmapsto {\mathrm {  Area =2 \times 2 \times 2  \sqrt{5   }   }}\\

\qquad \quad \qquad \quad \underline {\boxed{\pink{\mathrm {  Area \:  =  8\sqrt{5} cm^{2} }}}}\\

Hence ,

 \dag\:\: {\underline{\pink{\mathrm {  Area\:of\:Isosceles \;Triangle =  8\sqrt{5} cm^{2} }}}}\\

___________________________________________

Answered by Anonymous
3

Answer:

QUESTION

Find the area of isosceles triangle whose equal side is 6cm,6cm and 8cm.

ANSWER

 \fbox \red{area \: of \: triangle} =  \frac{1}{2}  \:  \: ( 8cm \times 6cm) \\  \\   \blue {\frac{1}{2}  \:  \div 48 = 24cm} \\  \\  \fbox \green{FORMULA USED} \\  \\  \frac{1}{2}(b \times h)

I hope it helps you

#SILENT GIRL ANSWER

Similar questions