Math, asked by keshavraj9150, 1 month ago

find the Area of polygons ​

Attachments:

Answers

Answered by MrMonarque
18

||GIVEN||

  • ABCD is a Trapezium.
  • AB = 15cm, CD = 25cm & AD = 16cm
  • In Trapezium, Rectangle EFGH is inscribed EF = 3cm & FG = 10cm.
  • Along with a circle of Diameter 7cm.

||TO FIND||

  • Area of the Polygon.
  • Area of Shaded Region.
  • Area Remaining [Unshaded Region].

||SOLUTION||

Area of Trapezium ABCD,

 \frac{(15 + 25)}{2}  \times 16 \\ 40 \times 8 \\ 320

  • Area of Trapezium ☞ 320cm²

Area of Rectangle EFGH

3 \times 10 \\  30

  • Area of Rectangle ☞ 30cm²

In the given Circle

Diameter = 7cm

Radius = diameter/2

R = 7/2

\pi { (\frac{7}{2}) }^{2}  \\  \frac{22}{7}  \times  \frac{7}{2}  \times  \frac{7}{2}  \\  11 \times  \frac{1}{2}   \times  \frac{7}{2}  \\  \frac{77}{2}  \\ 38.5

  • Area of Circle ☞ 38.5cm²

Area of Unshaded Region = Area of Rectangle+Area of Circle

30 + 38.5 \\ 68.5

  • Area of Unshaded Region = 68.5cm²

Area of Shaded Region = Area of Polygon-Area of Unshaded Region

320 - 68.5 \\ 281.5

  • Area of Shaded Region ☞ 281.5cm²

\boxed{\sf{Area\;of\; Trapezium = \frac{(a+b)}{2}h}}

\boxed{\sf{Area\;of\; Rectangle = Length×Breadth}}

\boxed{\sf{Area\;of\; Circle = \pi{r}^{2}}}

\tt{@MrMonarque}

Hope It Helps You ✌️

Attachments:
Similar questions