Math, asked by sahil3441, 1 year ago

Find the area of quadrant of circle whose circumference is 22cm​

Answers

Answered by Anonymous
14
\sf{\underline{Here:}}

We have to find the circumference (circle) and then the area of a quadrant.

\sf{\underline{Formulas\:to\:be\:used:}}

\boxed{\sf{Circumference = 2\pi r}}

\boxed{\sf{Area \: of \: Quadrant = \frac{1}{4} \pi {r}^{2}}}

\sf{\underline{Circumference:}}

\implies \sf{2\pi r}

\implies \sf{22 = 2 \times \frac{22}{7} \times r}

\implies \sf{r = \frac{22 \times 7}{22 \times 2}}

\implies \sf{r = \frac{154}{44}}

\implies \boxed{\sf{r = 3.5}}

\sf{\underline{Now:}}

\sf{\underline{Area\:of\:a\:quadrant:}}

\implies \sf{ \frac{1}{4} \pi {r}^{2}}

\implies \sf{\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5}

\implies \sf{ \frac{1 \times 22 \times 35 \times 35}{4 \times 7 \times 10 \times 10}}

\implies \sf{\frac{1 \times 11 \times35 }{4 \times 10}}

\implies \sf{ \frac{385}{40}}

\implies \boxed{\sf{9.625 \: {cm}^{2}}}

\sf{\underline{Therefore:}}

The area of quadrant of circle is \sf{9.625 \: {cm}^{2}} .
Answered by Nereida
83

\huge\star{\red{\underline{\mathfrak{Answer :-}}}}

 \implies  {\frac{77}{8}  {cm}^{2}}

\huge\star{\red{\underline{\mathfrak{Explanation :-}}}}

Given :-

The circumference of the circle is 22 cm.

To find :-

The area of a quadrant of the circle.

Solution :-

If the circumference = 22 cm.

Then,

\leadsto {2\pi \: r = 22 \: cm}

\leadsto {2 \times  \frac{22}{7}  \times r = 22}

\leadsto {r = 22 \times  \frac{7}{22}  \times  \frac{1}{2} }

\leadsto {r =  \frac{7}{2}}

Therefore, radius of the circle = 7/2 cm

Now, let us find the area of the quadrant of the circle.

The formula to find the area of the quadrant of the circle is :-  \frac{\pi {r}^{2} }{4}

So, putting in the values that we know :-

 =  \frac{ \frac{22}{7}  \times ( { \frac{7}{2} )}^{2} }{4}

 =  \frac{11\:\:\cancel {22} }{\cancel {7}}  \times  \frac {\cancel {7}}{2}  \times  \frac{7}{2}  \times  \frac{1}{\cancel{4} \:\: 2}

 =  \frac{11 \times 7}{2 \times 2 \times 2}

 =  \frac{77}{8}  {cm}^{2}

So, the area of the quadrant of the circle is : (77/8) cm^2.

_________________________________

Similar questions