Math, asked by KaRanFTW, 7 months ago

find the area of quadrilateral ABCD in which ab=18,bc=20,cd=24,da=26,ac=28 cm​

Attachments:

Answers

Answered by MoodyCloud
8

Given:-

  • AB = 18 cm.
  • BC = 20 cm.
  • CD = 24 cm.
  • DA = 26 cm.
  • AC = 28 cm.

To find:-

  • Area of quadrilateral ABCD.

Solution:-

  • Two triangles are forming . One is ∆ABC and second is ∆ADC.

In ∆ABC

S = AB + BC + AC/2

S = 18 + 20 + 28/2

S = 66/2

S = 33

Semi-perimeter = 33 cm.

Area of ∆ABC :

 \implies \sf  \sqrt{33 (33 - 18)(33 - 20)(33 - 28)}

 \implies \sf \sqrt{ 33 \times 15 \times 13 \times 5}

 \implies \sf  \sqrt{3 \times 11 \times 5 \times 3 \times 13 \times 5}

 \implies \sf 3 \times 5 \sqrt{11 \times 13}

 \implies \sf 15 \times  \sqrt{143}

 \implies \sf 178.5

Area of ABC is 178.5 cm².

__________________________________

In ∆ADC

S = CD + DA + AC/2

S = 24 + 26 + 28/2

S = 78/2

S = 39

Semi-perimeter = 39 cm.

Area of ∆ADC :

 \implies \sf  \sqrt{39 (39 - 24)(39 - 26)(39 - 28)}

 \implies \sf \sqrt{ 39 \times 15 \times 13 \times 11}

 \implies \sf  \sqrt{3 \times 13 \times 5 \times 3 \times 13 \times 11}

 \implies \sf 3 \times 13 \sqrt{11 \times 5}

 \implies \sf 39 \times  \sqrt{55}

 \implies \sf 288.6

Area of ADC is 288.6 cm².

_________________________________

Area of ABCD = Area of ABC + Area of ADC

= 178.5 + 288.6 cm²

= 467.1 cm²

Therefore,

Area of quadrilateral ABCD is 467.1 cm².

__________________

Formula used:

 \large \boxed{\sf Area\:of\: triangle= \sqrt{s(s-a)(s-b)(s-c)}}

In which,

  • S is semi-perimeter of triangle.
  • a , b and c are sides of triangle
Similar questions