Math, asked by anshukumar3678990, 10 months ago

find the area of quadrilateral ABCD in which AB equal to 3 cm BC equal to 4 cm CD equal to 4 cm equal to 5 cm and ac equal to 5cm​

Answers

Answered by Anonymous
14

  \mathbb{ \boxed{ \boxed{ \fcolorbox{red}{pink}{ANSWER \: BELOW :}}}}

For ABC

AC² = AB² + BC²

(5)² = (3)² + (4)²

So, ABC is a right angle triangle, right angled at a point B.

Area of ABC

 =  \:  \frac{1}{2}  \times AB \times BC \\  \implies \:  \frac{1}{2}  \times 3 \times 4 \:  =  {6cm}^{2}  \\

For ADC

Perimeter

 = 2s = AC \:  +  \: CD \:  +  \: DA \\  2s = (5 \:  +  \: 4 \:  +  \: 5) \:cm \\  2s = 14\:cm \\ s =  \frac{14}{2}  \\  s = 7\:cm \\

  • By Heron's Formula

Area of Triangle

 =  \sqrt{s(s - a)(s - b)(s - c)}  \:{cm}^{2}  \\

Area of △

 =  \sqrt{7(7 - 5)(7 - 5)(7 \times 4)} \: {cm}^{2}  \\  =  \sqrt{7 \times 2 \times 2 \times 3}  \:{cm}^{2}  \\  = 2 \sqrt{21}  \:{cm}^{2}  \\= (2 \times 4.583) \:{cm}^{2}  \\  = 9.166\: {cm}^{2}  \\

Area of △ABCD = Area of △ABC + Area of △ACD

=(6 + 9.166) \:\:{cm}^{2}  \\  = 15.166\: \:{cm}^{2}  \\  = 15.166\: \:{cm}^{2}  \\  = \boxed{\red{15.2\: \:{cm}^{2} }}\:\:\:\:(Approximately)

&lt;marquee behavior = "alternate" &gt; ✨</strong><strong> </strong><strong>❦</strong><strong> </strong><strong>I</strong><strong> hope it's helps you</strong><strong> </strong><strong>❦</strong><strong>✨</strong><strong> </strong><strong>

Answered by nagakalakoppalli
2

Answer:

 &lt;Marquee&gt; hiii..........

Similar questions