Math, asked by manasakavala5989, 9 months ago

Find the area of quadrilateral ABCD whose vertices are A (1, 0), B (5, 3), C (2, 7), D ( -2, 4)

Answers

Answered by Tomboyish44
4

ATQ,

A → (1, 0)

B → (5, 3)

C → (2, 7)

D → (-2, 4)

Since we are asked to find the area of the quadrilateral, we'll draw a line joining any two opposite vertices to form two triangles.

We'll find the area of both these triangles separately, then add them up to get the area of the quadrilateral.

\\

Area of ΔACD:

A (x₁, y₁) → (1, 0)

D (x₂, y₂) → (-2, 4)

C (x₃, y₃) → (2, 7)

  • ar(ΔABD) = ¹/₂ (x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂))
  • ar(ΔABD) = ¹/₂ (1 (4 - 7) + -2 (7 - 0) + 2 (0 - 4))
  • ar(ΔABD) = ¹/₂ (1 (-3) + -2 (7) + 2 (-4))
  • ar(ΔABD) = ¹/₂ (-3 - 14 -8)
  • ar(ΔABD) = ¹/₂ (-25)
  • ar(ΔABD) = -12.5
  • (Area can't be negative, therefore ↓)
  • ar(ΔABD) = 12.5 sq.units.

\\

Area of ΔABC:

A (x₁, y₁) → (1, 0)

B (x₂, y₂) → (5, 3)

C (x₃, y₃) → (2, 7)

  • ar(ΔABD) = ¹/₂ (x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂))
  • ar(ΔABD) = ¹/₂ (1 (3 - 7) + 5 (7 - 0) + 2 (0 - 3))
  • ar(ΔABD) = ¹/₂ (1 (-4) + 5 (7) + 2 (-3))
  • ar(ΔABD) = ¹/₂ (-4 + 35 - 6)
  • ar(ΔABD) = ¹/₂ (35 - 10)
  • ar(ΔABD) = ¹/₂ (25)
  • ar(ΔABD) = 12.5 sq.units.

\\

Area of ABCD = Area of ABC + Area of ACD

Area of ABCD = 12.5 + 12.5

Area of ABCD = 25 sq.units

\\

Hope you understood! (◕‿◕)

Attachments:
Answered by Ataraxia
5

The veritces of quadrilateral ABCD are A (1,0) ,B (5,3) , C (2,7) and D (-2,4).

AB

=\sqrt{(5-1)^{2} +(3-0)^{2} }

=\sqrt{4^2+3^2}

=\sqrt{16+9}

=\sqrt{25}

=5 \:units

AD

=\sqrt{(-2-1)^{2}+(4-0)^{2}

=\sqrt{(-3)^2+4^2}

=\sqrt{9+16}

=\sqrt{25}

=5 \: units

BC

=\sqrt{(2-5)^{2}+(7-3)^{2}  }

=\sqrt{(-3)^{2} +4^{2} }

=\sqrt{16+9}

=\sqrt{25}

= 5 \: units

CD

= \sqrt{(-2-2)^{2}+(4-7)^{2}  }

=\sqrt{(-4)^{2} +(-3)^{2} }

=\sqrt{16+9}

=\sqrt{25}

= 5 \: units

AB = AD = BC = CD

So quatrilateral ABCD is a square .

Area of square = Side × Side

                       = 5²

                       = 25 sq.units

HOPE IT HELPS U .........

Similar questions