Find the area of quadrilateral ABCD whose vertices are: A(1,3), B(-3,-5), C(4,1) and D(-2,4).
Answers
Answered by
2
Given,
- A = (1,3)
- B = (-3,-5)
- C = (4,1)
- D = (-2,4)
Let AC be the diagonal of quadrilateral ABCD.
Therefore,
Area of quadrilateral ABCD= Area of ΔABC + Area of ΔADC
__________________________________________________
Area of ΔABC = 1/2[ x₁(y₂ - y₃) - x₂(y₃ - y₁) - x₃(y₁ - y₂) ]
Area = 1/2[ (1)(-5-3) + (-3)(1-3) +(4)(3+5) ]
Area =1/2[-8+6+32]
Area of ΔABC = 15 sq units
__________________________________________________
Area of ΔADC = = 1/2[ x₁(y₂ - y₃) - x₂(y₃ - y₁) - x₃(y₁ - y₂) ]
Area = 1/2[ (1)(4-1) + (-2)(1-3) + (4)(3-4) ]
Area = 1/2[3+4-4]
Area of ΔADC = 3/2 sq units
__________________________________________________
Hence,
Area of quadrilateral ABCD = 15 + (3/2)
Area of quadrilateral ABCD = 33\2 square units.
Similar questions