Math, asked by Anonymous, 9 months ago

Find the area of quadrilateral ABCD whose vertices are: A(1,3), B(-3,-5), C(4,1) and D(-2,4).

Answers

Answered by Unni007
2

Given,

  • A = (1,3)
  • B = (-3,-5)
  • C = (4,1)
  • D = (-2,4)

Let AC be the diagonal of quadrilateral ABCD.

Therefore,

Area of quadrilateral ABCD= Area of ΔABC + Area of ΔADC

__________________________________________________

Area of ΔABC = 1/2[ x₁(y₂ - y₃) - x₂(y₃ - y₁) - x₃(y₁ - y₂) ]

Area = 1/2[ (1)(-5-3) + (-3)(1-3) +(4)(3+5) ]

Area =1/2[-8+6+32]

Area of ΔABC = 15 sq units

__________________________________________________

Area of ΔADC = = 1/2[ x₁(y₂ - y₃) - x₂(y₃ - y₁) - x₃(y₁ - y₂) ]

Area = 1/2[ (1)(4-1) + (-2)(1-3) + (4)(3-4) ]

Area = 1/2[3+4-4]

Area of ΔADC = 3/2 sq units

__________________________________________________

Hence,

Area of quadrilateral ABCD = 15 + (3/2)

Area of quadrilateral ABCD = 33\2 square units.

Similar questions