Math, asked by sinchanatr803, 7 months ago

Find the area of quadrilateral ABCD whose vertices are A
(-4, -2), B (-3, -5), C (3, -2), D (2, 3).

Answers

Answered by simranjagtap
4

3Pieces/lot FOR HD32-D2 LCD TV backlight strip RH43-D3202X-06A-JF JL.D32061235- 017IS-F 575MM 6V 6LED. $16.50 $16.50. View It.

Step-by-step explanation:

plzz mark me as brainlaist

I will follow you

Answered by Anonymous
62

Given,

Vertices of quad. ABCD

  • \sf A(-4,-2)
  • \sf B(-3,-5)
  • \sf C(3,-2)
  • \sf D(2,3)

To find,

  • Area of quadrilateral ABCD

\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━━━━━

\:

Solution,

\sf \:\:\:\:\:\:\:\:\:\:\:\:Join \:A\: and\: C.\: Then,\:\:\:\:\:\:\:\:\:\:\:\:[fig个]

\sf ar\: of \:quad. ABCD= \sf ar(∆ABC)+ar(∆ACD)

\:\:

{\bold { \underline{\normalsize{Area\: of \:∆ABC}}}}

\:\:

\bf\dfrac{1}{2} \sf •|{(-4)•(-5+2)-3(-2+2)+3(+3)}|

\:\:

\:\:\:\:\:\:\:\leadsto\bf\dfrac{1}{2} \sf •|(-4)•(-3)-3×0+3×3|

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leadsto\bf\dfrac{1}{2} \sf •|12-0+9|

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leadsto\bf\dfrac{21}{2}\sf sq\:units.

\:\:

{\bold { \underline{\normalsize{Area\: of \:∆ACD}}}}

\:\:

\bf\dfrac{1}{2}\sf •|{(-4)•(-2-3)+3(5)+2(-2+2)}|

\:\:

\:\:\:\:\:\:\:\:\leadsto\bf\dfrac{1}{2}\sf •|{(-4)•(-5)+3×5+2×0}|

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leadsto\bf\dfrac{1}{2}\sf •|20+15+0|

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\leadsto\bf\dfrac{35}{2}\sf sq\:units.

\:\:

\therefore \sf area\:of\:quad.ABCD=\bigg( \bf\dfrac{21}{2}+\bf\dfrac{35}{2}\bigg) \sf sq\:u

\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underline{\boxed{\sf{=\frak{\purple{28\:sq\:units.}}}}}

Attachments:
Similar questions