Math, asked by aisha90012, 5 months ago

find the area of rectangle with following dimensions
length 2y+2,
width 4y ,
perimeter 100 cm​

Answers

Answered by mehtabkhan1234567891
1

Answer:

Using the formulas

A=wl

P=2(l+w)

Solving forA

A=Pl

2﹣l2=100·2

2﹣22=96

Step-by-step explanation:

your answer is 96

Answered by Agamsain
21

Answer :-

  • Length of Rectangle = 18 cm
  • Width of Rectangle = 32 cm

Given :-

  • Length of Rectangle = 2y + 2 cm
  • Width of Rectangle = 4y cm
  • Perimeter of Rectangle = 100 cm

To Find :-

  • Length of Rectangle = ?
  • Width of Rectangle = ?

Explanation :-

As we know,

\purple { \boxed { \bigstar \: \text{ \bf Perimeter of Rectangle = 2(L +B) cm } \bigstar }}

Now making an Equation,

\rm : \: \longmapsto 2(L +B) = \text{Perimeter of Rectangle}

\rm : \: \longmapsto 2[(2y + 2) + (4y)] = 100

\rm : \: \longmapsto 2(2y + 4y + 2) = 100

\rm : \: \longmapsto 2(6y + 2) = 100

\rm : \: \longmapsto 6y + 2 = \dfrac{100}{2}

\rm : \: \longmapsto 6y = 50 - 2

\rm : \: \longmapsto 6y = 48

\red { \underline { \boxed { \bf : \: \longmapsto y = 8 \: cm }}}

Now Substituting the value of 'y',

\odot \: \rm Length = 2y + 2 = 2(8) + 2 = 16 + 2 \implies \bold{18 \: cm}

\odot \: \rm Width = 4y = 4(8) \implies \bold{32 \: cm}

Hence, the Length and Width of the Rectangle are 18 cm and 32 cm Respectively

Similar questions