Math, asked by vignesh1887, 1 year ago

find the area of sector whose radius is 7cm .and angle of sector is 180

Answers

Answered by AlonsoDehner
12

Given that radius of a circle  = 7cm.

Area of a sector has to be calculated. Given that the radius of the circle is 7 cm and angle of sector is 180 degrees.

Area of sector = \frac{x}{360} (\pi r^2)


Here x = angle of sector = 180 degrees, r = 7 and pi = 3.14


Substitute to get answer as\frac{180}{360} (3.14)(7^2) = 77 sq cm

Answered by Anonymous
11

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

______________________________

Given :

Angle of sector (\sf{\theta)} = 180°

Radius (r) = 7 cm

______________________________

To Find :

We have to find the area of the sector.

_______________________________

Solution :

We know the formula to find the area of the sector.

\large{\boxed{\boxed{\sf{Area = \frac{\theta}{360^{\circ}} \pi r^2}}}} \\ \\ \small{\gray{\underline{\sf{\dag \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: Put \: Values \: \: \: \: \: \: \: \: \: \: \:\: \: \: \: \: \: \: \dag}}}} \\ \\ \sf{\implies Area = \frac{\cancel{180}}{\cancel{360}} \times \frac{22}{7} \times 7 \times 7} \\ \\ \sf{\implies Area = \frac{1}{\cancel{2}} \times \frac{\cancel{22}}{\cancel{7}} \times \cancel{7} \times 7} \\ \\ \sf{\implies Area = 11 \times 7} \\ \\ \sf{\implies Area = 77} \\ \\ \sf{\therefore \: Area \: of \: sector \: is \: 77 \: cm^2.}

Similar questions