Math, asked by varshamanivarshu, 8 months ago

find the area of semicicle in the shaded region and take pie=3.14 and for finding AC use Pythagoras theorem ​

Attachments:

Answers

Answered by meghamala07
1

Answer:

area of shaded region = area of semicircle - area of triangle

ar(shaded) = πr²- 1/2 base × height

= (3.14) - 1/2 (base* height

by pythagorous theprem

12²+16²=AC²

144+256= Ac²

Ac= √400.

AC= 20. base=20

then height =r = 10

ar(shaded)= 3.14(10)² - 1/2(20*10)

ar(shaded) = 3.14×100 - 1/2×200

ar(shaded)= 314 - 100

=214sq.cm

therefore area of shaded region is 214sq.cm

Answered by Truebrainlian9899
32

☞︎︎︎ Given :

 \:  \:  \:  \:  \:  \:  \:

  • Base = 16cm

 \:  \:  \:  \:  \:  \:  \:

  • height = 12cm

 \:  \:  \:  \:  \:  \:  \:

  • Hint for finding AC

 \:  \:  \:  \:  \:  \:  \:

  • Pie = 3.14

 \:  \:  \:  \:  \:  \:  \:

☞︎︎︎ To Find :

 \:  \:  \:  \:  \:  \:  \:

  • Area if shaded region

 \:  \:  \:  \:  \:  \:  \:

\looparrowright we see that, whole figure is of semi circle

 \:  \:  \:  \:  \:  \:  \:

_____________________________________________

☞︎︎︎ Solution :

 \:  \:  \:  \:  \:  \:  \:

  • ☕︎ Pythagoras Theorem -

 \:  \:  \:  \:  \:  \:  \:

 \large \dashrightarrow  \boxed{\boxed{ \mathtt{ {h}^{2} =  {b}^{2} +  {p}^{2}   }}}

 \:  \:  \:  \:  \:  \:  \:

❥︎ here,

 \:  \:  \:  \:  \:  \:  \:

  • h = hypotenuse (side to find )

 \:  \:  \:  \:  \:  \:  \:

  • b = 16cm

 \:  \:  \:  \:  \:  \:  \:

  • p = 12cm

 \:  \:  \:  \:  \:  \:  \:

On solving :

 \:  \:  \:  \:  \:  \:  \:

 \mapsto \:  \mathtt{ {h}^{2}  =  {16}^{2}  +  {12}^{2} }

 \:  \:  \:  \:  \:  \:  \:

✞︎ We know ,

 \:  \:  \:  \:  \:  \:  \:

  • 16² = 256

 \:  \:  \:  \:  \:  \:  \:

  • 12² = 144

 \:  \:  \:  \:  \:  \:  \:

 \mapsto \mathtt{ \: h {}^{2} = 256 + 144 }

 \:  \:  \:  \:  \:  \:  \:

 \mapsto \mathtt{ \:  {h}^{2} = 400 }

 \:  \:  \:  \:  \:  \:  \:

\looparrowright On transposing the terms :

 \:  \:  \:  \:  \:  \:  \:

 \mapsto \:  \mathtt{h =  \sqrt{400} }

 \:  \:  \:  \:  \:  \:  \:

 \bigstar \:  \large \boxed{ \therefore \mathtt{ \: h = 20cm}}

_____________________________________________

 \:  \:  \:  \:  \:  \:  \:

Now,

 \:  \:  \:  \:  \:  \:  \:

  • Find area of triangle

 \:  \:  \:  \:  \:  \:  \:

 \large \dashrightarrow \boxed{ \mathtt{area \:  =  \frac{1}{2}  \times b \times h}}

 \:  \:  \:  \:  \:  \:  \:

✞︎ Here,

 \:  \:  \:  \:  \:  \:  \:

  • b = base (16cm)

 \:  \:  \:  \:  \:  \:  \:

  • h = height (12cm)

 \:  \:  \:  \:  \:  \:  \:

On Solving :

 \:  \:  \:  \:  \:  \:  \:

 \mapsto \mathtt{ \: area =  \dfrac{1}{2}  \times 16 \times 12}

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \: area = 8 \times 12}

 \:  \:  \:  \:  \:  \:  \:

 \bigstar \:  \large \boxed{ \therefore \mathtt{ \underline{ \: area = 96 {cm}^{2} }}}

 \:  \:  \:  \:  \:  \:  \:

_____________________________________________

Now ,

 \:  \:  \:  \:  \:  \:  \:

☞︎︎︎ We Have :

 \:  \:  \:  \:  \:  \:  \:

  • Area of triangle

 \:  \:  \:  \:  \:  \:  \:

  • hypotenuse

 \:  \:  \:  \:  \:  \:  \:

Finding area of semicircle -

 \:  \:  \:  \:  \:  \:  \:

  • pie = 3.14

 \:  \:  \:  \:  \:  \:  \:

  • r = radius (20cm)

 \:  \:  \:  \:  \:  \:  \:

 \large \dashrightarrow \boxed{ \mathtt{area \:  =  \frac{1}{2}  \times \pi{r}^{2} }}

 \:  \:  \:  \:  \:  \:  \:

❥︎ We take half because it is a semicircle

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \: area \:  =   \dfrac{1}{2} \times 3.14 \times 20 {}^{2}  }

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \: area \:  =   \dfrac{1}{2} \times 3.14 \times 20 {}^{}  \times 20 }

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \: area \:  =   {1}{} \times 3.14 \times 10 {}^{}  \times 20 }

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \: area \:  =    3.14 \times 200 }

 \:  \:  \:  \:  \:  \:  \:

☕︎ Break the decimal :

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \: area \:  =     \dfrac{314}{100}  \times 200 }

 \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \: area \:  =    314 \times 2 }

 \:  \:  \:  \:  \:  \:  \:

 \bigstar \:  \large \boxed{ \therefore \underline{ {\mathtt{ \: area \:  =   628  {cm2} }}}}

 \:  \:  \:  \:  \:  \:  \:

_____________________________________________

 \:  \:  \:  \:  \:  \:  \:

☞︎︎︎ Area of shaded region :

= Area of semicircle - Area of triangle

☞︎︎︎ \mathtt{ \: \:  628 {cm}^{2} - 96 {cm}^{2}  }

 \:  \:  \:  \:  \:  \:  \:

 \:  \large \bigstar \:  \boxed{  \boxed{\therefore { \mathtt{ \: area \:  =  532 {cm {}^{2}  } }}}} \bigstar

_____________________________________________

 \:  \:  \:  \:  \:  \:  \:

Similar questions
Math, 11 months ago