Math, asked by safinasafina, 2 months ago

Find the area of semicircle of radius 4cm.​

Answers

Answered by Anonymous
9

\star \; {\underline{\boxed{\orange{\pmb{\pmb{\pmb{\textbf{\textsf{ Given \;}}}}}}}}}

\begin{gathered} \\\end{gathered}

  • Radius = 4cm

\begin{gathered} \\\end{gathered}\begin{gathered}\begin{gathered} \\ \\\end{gathered}\star \;{\underline{\boxed{\purple{\pmb{\pmb{\pmb{\textbf{\textsf{ To\;Find \; :- }}}}}}}}}\end{gathered}

\begin{gathered} \\\end{gathered}

  • Area of semicircle = ?

\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}

\begin{gathered} \\\end{gathered}\star \;{\underline{\boxed{\red{\pmb{\pmb{\pmb{\textbf{\textsf{ SoluTion \; :- }}}}}}}}}

\begin{gathered} \\ \\\end{gathered}

Formula Used :

  • {\underline{\boxed{\pmb{\pmb{\sf{ \: \sf \:Area_{(Semicircle)}=\dfrac{1}{2}×\dfrac{22}{7}×r^2  }}}}}}

\begin{gathered}\begin{gathered} \\ \end{gathered}\end{gathered}\begin{gathered}\begin{gathered} \\ \\\end{gathered}\dag \;{\underline{\underline{\sf{ \; Calculating \; the \; Area}}}}\end{gathered}

\begin{gathered} \\ \qquad \; \dashrightarrow \sf{  Area_{(Semicircle)}=\dfrac{1}{2}×\dfrac{22}{7}×r^2}\end{gathered}

\begin{gathered} \\ \qquad \; \dashrightarrow \sf{  Area_{(Semicircle)}=\dfrac{1}{2}×\dfrac{22}{7}×4 {}^{2} }\end{gathered}

\begin{gathered} \\ \qquad \; \dashrightarrow \sf{  Area_{(Semicircle)}=\dfrac{1}{ \cancel{2}}×\dfrac{  \cancel{22}}{7}×4  \times 4}\end{gathered}

\begin{gathered} \\ \qquad \; \dashrightarrow \sf{  Area_{(Semicircle)}=\dfrac{11}{7}×4   \times 4}\end{gathered}

\begin{gathered} \\ \qquad \; \dashrightarrow \sf{  Area_{(Semicircle)}=\dfrac{176}{7}  \times 4}\end{gathered}

\begin{gathered} \\ \qquad \; \dashrightarrow \sf{  Area_{(Semicircle)}=25.14cm \:  \:  \: { \color{lightgreen}(Approx.)}}\end{gathered}

 \\ \\

 \begin{gathered} \qquad \; \dashrightarrow \; \; {\underline{\boxed{\color{darkblue}{\pmb{\pmb{\frak { Area_{(Semicircle)}=25.14cm}}}}}}} \; \bigstar \\ \\ \end{gathered}

\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}

∴ Area of the semicircle is 25.14cm.

\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}

Answered by sk02468
4

Answer:

\star \; {\underline{\boxed{\orange{\pmb{\pmb{\pmb{\textbf{\textsf{ Given \;}}}}}}}}}⋆

Given

Given

Given

Given

Given

Given

Given

Given

\begin{gathered}\begin{gathered} \\\end{gathered}\end{gathered}

Radius = 4cm

\begin{gathered}\begin{gathered} \\\end{gathered}\begin{gathered}\begin{gathered} \\ \\\end{gathered}\star \;{\underline{\boxed{\purple{\pmb{\pmb{\pmb{\textbf{\textsf{ To\;Find \; :- }}}}}}}}}\end{gathered}\end{gathered}

ToFind :-

ToFind :-

ToFind :-

ToFind :-

ToFind :-

ToFind :-

ToFind :-

ToFind :-

\begin{gathered}\begin{gathered} \\\end{gathered}\end{gathered}

Area of semicircle = ?

\begin{gathered}\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} \\\end{gathered}\star \;{\underline{\boxed{\red{\pmb{\pmb{\pmb{\textbf{\textsf{ SoluTion \; :- }}}}}}}}}\end{gathered}

SoluTion :-

SoluTion :-

SoluTion :-

SoluTion :-

SoluTion :-

SoluTion :-

SoluTion :-

SoluTion :-

\begin{gathered}\begin{gathered} \\ \\\end{gathered}\end{gathered}

❍ Formula Used :

{\underline{\boxed{\pmb{\pmb{\sf{ \: \sf \:Area_{(Semicircle)}=\dfrac{1}{2}×\dfrac{22}{7}×r^2 }}}}}}

Area

(Semicircle)

=

2

1

×

7

22

×r

2

Area

(Semicircle)

=

2

1

×

7

22

×r

2

Area

(Semicircle)

=

2

1

×

7

22

×r

2

Area

(Semicircle)

=

2

1

×

7

22

×r

2

\begin{gathered}\begin{gathered}\begin{gathered} \\ \end{gathered}\end{gathered}\begin{gathered}\begin{gathered} \\ \\\end{gathered}\dag \;{\underline{\underline{\sf{ \; Calculating \; the \; Area}}}}\end{gathered}\end{gathered}

CalculatingtheArea

\begin{gathered}\begin{gathered} \\ \qquad \; \dashrightarrow \sf{ Area_{(Semicircle)}=\dfrac{1}{2}×\dfrac{22}{7}×r^2}\end{gathered}\end{gathered}

⇢Area

(Semicircle)

=

2

1

×

7

22

×r

2

\begin{gathered}\begin{gathered} \\ \qquad \; \dashrightarrow \sf{ Area_{(Semicircle)}=\dfrac{1}{2}×\dfrac{22}{7}×4 {}^{2} }\end{gathered}\end{gathered}

⇢Area

(Semicircle)

=

2

1

×

7

22

×4

2

\begin{gathered}\begin{gathered} \\ \qquad \; \dashrightarrow \sf{ Area_{(Semicircle)}=\dfrac{1}{ \cancel{2}}×\dfrac{ \cancel{22}}{7}×4 \times 4}\end{gathered}\end{gathered}

⇢Area

(Semicircle)

=

2

1

×

7

22

×4×4

\begin{gathered}\begin{gathered} \\ \qquad \; \dashrightarrow \sf{ Area_{(Semicircle)}=\dfrac{11}{7}×4 \times 4}\end{gathered}\end{gathered}

⇢Area

(Semicircle)

=

7

11

×4×4

\begin{gathered}\begin{gathered} \\ \qquad \; \dashrightarrow \sf{ Area_{(Semicircle)}=\dfrac{176}{7} \times 4}\end{gathered}\end{gathered}

⇢Area

(Semicircle)

=

7

176

×4

\begin{gathered}\begin{gathered} \\ \qquad \; \dashrightarrow \sf{ Area_{(Semicircle)}=25.14cm \: \: \: { \color{lightgreen}(Approx.)}}\end{gathered}\end{gathered}

⇢Area

(Semicircle)

=25.14cm(Approx.)

\begin{gathered} \\ \\ \end{gathered}

\begin{gathered} \begin{gathered} \qquad \; \dashrightarrow \; \; {\underline{\boxed{\color{darkblue}{\pmb{\pmb{\frak { Area_{(Semicircle)}=25.14cm}}}}}}} \; \bigstar \\ \\ \end{gathered}\end{gathered}

Area

(Semicircle)

=25.14cm

Area

(Semicircle)

=25.14cm

Area

(Semicircle)

=25.14cm

Area

(Semicircle)

=25.14cm

\begin{gathered}\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}\end{gathered}

∴ Area of the semicircle is 25.14cm.

\begin{gathered}\begin{gathered}\begin{gathered} \\ \qquad{\rule{200pt}{2pt}} \end{gathered}\end{gathered}\end{gathered}

Similar questions