Math, asked by prince5132, 10 months ago

find the area of shaded region​

Attachments:

Answers

Answered by Anonymous
16

Answer:

θ = π/2

Area of sector = 1/2 r² θ

= 1/2 r² π/2

= πr²/4

Area of circle = πr²

Area of shaded region

= πr²/4 - πr²

= (πr² - 4πr²)/4

= -3πr²/4 sq unit,,

Answered by Rohith200422
6

Question:

Find the area of shaded region.

Answer:

Area \: of \: shaded \: region \: is \:  \underline{ \: \underline{ \:  \sf \pink{101.8 \: sq.units} \: } \: }

Given:

★ A diagram is given,

  • A Circle is fixed in the quadrant.

\bigstar Radius \: of \: quadrant = 12cm

\bigstar Radius \: of \: circle = ?

Step-by-step explanation:

We know that,

 \boxed{Area \: of \: quadrant =  \frac{1}{4} \pi {r}^{2} \: sq.units }

Let \: the \: value \: of \: \underline{ \: \underline{ \:  \bold{\pi \: be \:  \frac{22}{7}}  \: }  \: }

\implies  \frac{1}{ \not{4}}  \times  \frac{22}{7}  \times   \not{12}_{3} \times 12

\implies  \frac{22 \times 3 \times 12}{7}

 \implies  \frac{792}{7}

 \implies  \boxed{113.14 \: sq.units}

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

 \boxed{Circumference = 2 \pi r }

 \mapsto 2\pi r = 12

 \mapsto  \boxed{\pi r = 6}

 \mapsto   \frac{22}{7}  \times  r = 6

 \mapsto     r = 6 \times  \frac{7}{22}

 \mapsto  \boxed{ r = 1.90}

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:}

 \boxed{Area \: of \: circle = \pi {r}^{2} \: sq.units }

\hookrightarrow (\pi r)r

\hookrightarrow 6(1.9)

\hookrightarrow \boxed{ 11.4 \: sq.units}

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

 \bigstar Area \: of \: shaded \: region

\longrightarrow Area \: of \: quadrant - Area \: of \: circle

\longrightarrow 113.14 - 11.34

\longrightarrow  \boxed{101.8  \: sq.units}

 \therefore Area \: of \: shaded \: region \: is \:  \underline{ \:  \bold{101.8 \: sq.units} \: }

Formula used:

 \bigstar Area \: of \: quadrant =  \frac{1}{4} \pi {r}^{2} \: sq.units

 \bigstar Circumference = 2 \pi r

 \bigstar Area \: of \: circle = \pi {r}^{2} \: sq.units

Attachments:
Similar questions