Math, asked by apoorvaappu576, 10 months ago

find the area of shaded region of a circle of radius 14 cm if the length of the corresponding APB is 22cm​

Attachments:

Answers

Answered by Cosmique
18

Given :-

  • Radius of circle = 14 cm
  • length of corresponding arc = 22 cm

\setlength{\unitlength}{4mm}\begin{picture}(8,8)\thicklines\qbezier(0,3.8)(4,3.5)(4,0)\qbezier(0,3.8)(-4,3.5)(-4,0)\qbezier(4,0)(4,-3.5)(0,-3.8)\qbezier(-4,0)(-4,-3.5)(0,-3.8)  \put{\circle*{0.3}}\put(-0.2,0){\line(1,1){2.8}}\put(-0.2,0){\line(-1,1){2.9}}  \put(-3,2.9){\line(1,0){5.5}}\linethickness{4}\qbezier(-2.7,3)(0,4)(2.1,3.1)\qbezier(-2.6,3)(3,3)(2.1,3)\put(-1.5,3.2){\line(1,0){2.6}}\put(0,-0.5){P}\put(-3.5,3.5){A}\put(3.2,3.5){B}\put(1.2,1){14cm}\put(-0.5,4.5){22\;cm}\end{picture}

To find :-

  • Area of shaded region

Knowledge required :-

  • Formula to find the measure of an arc

\red{\bigstar}\boxed{\sf{Arc\:length=\dfrac{\theta}{360}\times 2\pi r}}

  • Formula to find the area of sector

\red{\bigstar}\boxed{\sf{area\:of\:sector=\dfrac{\theta}{360}\times \pi r^2}}

(where θ is the angle subtended by arc at centre and r is the radius of circle or sector)

Solution :-

Using formula for calculation of arc length

\implies\sf{22=\dfrac{\angle APB}{360}\times 2 \; \pi \times 14}\\\\\\\implies\sf{22=\dfrac{\angle APB}{360}\times 2\times \dfrac{22}{7} \times 14}\\\\\\\implies\underline{\underline{\red{\sf{\angle APB = \dfrac{360}{4}=90^{\circ}}}}}

Using formula for calculating area of sector

\implies\sf{ar(sector\: APB)=\dfrac{90^{\circ}}{360^{\circ}}\times \pi \times (14)^2}\\\\\\\implies\sf{ar(sector\:APB)=\dfrac{1}{4}\times \dfrac{22}{7}\times 14 \times 14}\\\\\\\implies\underline{\underline{\red{\sf{ar(sector\:APB)=154\:cm^2}}}}

Calculating area of triangle APB

\implies\sf{ar(\triangle APB)=\dfrac{1}{2}\times 14\times 14}\\\\\\\implies\underline{\underline{\red{\sf{ar(\triangle APB)=98\;cm^2}}}}

Now, calculating the area of shaded region

\implies\sf{ar(shaded\:region)=ar(sector \:APB)\;-\;ar(\triangle APB)}\\\\\\\implies\sf{ar(shaded\:region)=154-98}\\\\\\\implies\overbrace{\underbrace{\large{\red{\underline{\underline{\sf{Ar(shaded\:region=56\:cm^2}}}}}}}


BrainlyRaaz: Nice ♥️
Answered by TheSentinel
7

Question:

Find the area of shaded region of a circle of radius 14cm if the length of the corresponding APB is 22 cm.

Answer:

The area of shaded region of the circle

: 56 cm²

Given :

➛Radius of the circle : 14 cm.

➛length of the corresponding APB is 22

cm.

To Find:

The area of shaded region of the circle .

Solution:

We are given,

➛Radius of the circle :( r) 14 cm.

➛length of the corresponding APB is 22

cm.

We know,

{\large{\green{\boxed{\pink{\star{\rm{Perimeter\:of\:the\:circle\: = 2 \pi r }}}}}}} \\

 \implies \rm Perimeter\:of\:the\:circle\: = 2 \times \dfrac{22}{7} \times 14 \\

 \implies \rm Perimeter\:of\:the\:circle\: = 2 \times \dfrac{22}{ \cancel{7}} \times \cancel{14}(2)  \\

 \implies \rm Perimeter\:of\:the\:circle\: = 2 \times 22 \times 2 \\

{\therefore{\blue{\boxed{\orange{\star{\rm{Perimeter\:of\:the\:circle\: = 88 \: cm. }}}}}}} \\

We also know,

{\large{\green{\boxed{\pink{\star{\rm{Area\:of\:the\:segment\: = \dfrac{Arc\:length}{Perimeter\:of\:the\:circle} \times Area\:of\:the\:Circle}}}}}}} \\

but,

{\large{\green{\boxed{\pink{\star{\rm{Area\:of\:the\:circle\: = \pi {r}^{2} }}}}}}} \\

 \implies \rm Area\:of\:the\:segment = \dfrac{22}{88} \times \dfrac{22}{7} \times {14}^{2} \\

{\therefore{\blue{\boxed{\orange{\star{\rm{Area\:of\:the\:segment\: = 154 \: {cm}^{2} . }}}}}}} \\

Now calculating the area of triangle APB

We know,

{\large{\green{\boxed{\pink{\star{\rm{Area\:of\:the\: \triangle \: = \dfrac{1}{2} \times base \times height }}}}}}} \\

 \therefore \rm Area\:of\:the \: \triangle APB = \dfrac{1}{2} \times 14 \times 14 \\

 \therefore \rm Area\:of\:the \: \triangle APB = \dfrac{1}{\cancel{2}} \times \cancel{14} (2 )  \times 14 \\

{\therefore{\blue{\boxed{\orange{\star{\rm{Area\:of\:the \: \triangle APB =  98 \ {cm}^{2}  . }}}}}}} \\

Now,

{\small{\green{\boxed{\pink{\star{\rm{Area\:of\:the\:shaded\:region =  Area\:of\:the\: segment -  Area\:of\:the \: \triangle APB}}}}}}} \\

 \therefore \rm Area\:of\:the\:shaded\:region  = 154 - 98 \\

 \therefore \rm Area\:of\:the\:shaded\:region  = 56 {cm}^{2}</p><p> \\

{\therefore{\purple{\boxed{\red{\star{\rm{Area\:of\:the\:shaded\:region =  56 \ {cm}^{2}  . }}}}}}} \\

Attachments:

BrainlyRaaz: Perfect ✔️
Similar questions
Math, 1 year ago