Math, asked by iredlsesirit, 1 year ago

find the area of shaded reigon where a circular arc of radius 6cm has been drawn with vertex O of an equilateral triangle OAB of side 12 cm as centre

Answers

Answered by Deepanshu8256
18
 

OAB is an equilateral triangle with each angle equal to 60°.

Area of the sector is common in both.

Radius of the circle = 6 cm.

Side of the triangle = 12 cm.

Area of the equilateral triangle = √3/4 × (OA)2 = √3/4 × 122 = 36√3 cm2

Area of the circle = π R2 = 22/7 × 62 = 792/7 cm2

Area of the sector making angle 60° = (60°/360°) × π r2 cm2

                                                                              = 1/6 × 22/7 × 62 cm2  = 132/7 cm2

Area of the shaded region = Area of the equilateral triangle + Area of the circle - Area of the sector

OAB is an equilateral triangle with each angle equal to 60°.

Area of the sector is common in both.

Radius of the circle = 6 cm.

Side of the triangle = 12 cm.

Area of the equilateral triangle = √3/4 × (OA)2 = √3/4 × 122 = 36√3 cm2

Area of the circle = π R2 = 22/7 × 62 = 792/7 cm2

Area of the sector making angle 60° = (60°/360°) × π r2 cm2

                                                                              = 1/6 × 22/7 × 62 cm2  = 132/7 cm2

Area of the shaded region = Area of the equilateral triangle + Area of the circle - Area of the sector

                                          = 36√3 cm2 + 792/7 cm2 - 132/7 cm2

                                                        = (36√3 + 660/7) cm2


Answered by tnmithun50
10

mark me as brainlest

take value of

 \sqrt{3  }  = 1.73

Attachments:
Similar questions