Math, asked by shauryasingh27, 4 months ago

Find the area of the circular path if radius of outer circle is 10m & inner circle is 7m. What will be the cost of cementing it at the cost of 300 Rs per sq. meter?​

Attachments:

Answers

Answered by IdyllicAurora
58

Answer :-

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question\;:-}}}

Here the concept of Areas of Circle has been used. We are already given the figure. First we will find the area or inner circle. Then we will find the area of outer circle. Area of Outer Circle will include area of path added to area of inner circle. Also we know that the path is surrounding the inner circle. So area of path will be the area of outer circle subtracted by area of inner circle.

Let's do it !!

_______________________________________________

Equations Used :-

\\\;\boxed{\sf{Area\;of\;Circle\;=\;\bf{\pi r^{2}}}}

\\\;\boxed{\sf{Area\;of\;Path\;=\;\bf{Area\;of\;Outer\;Circle\;-\;Area\;of\;Inner\;Circle}}}

\\\;\boxed{\sf{Total\;cost\;of\;Cementing\;=\;\bf{Rate_{(in\;per\;m^{2})}\;\times\;Area\;of\;Path}}}

_______________________________________________

Solution :-

Given,

» Radius of inner circle = 7 m

» Radius of outer circle = 10 m

» Rate of cementing per m² = Rs. 300

_______________________________________________

~ For Area of Inner Circle :-

\\\;\;\;\;\;\sf{:\rightarrow\;\;\;Area\;of\;Circle_{(Inner)}\;=\;\bf{\pi r^{2}}}

\\\;\;\;\;\;\sf{:\rightarrow\;\;\;Area\;of\;Circle_{(Inner)}\;=\;\bf{\dfrac{22}{7}\;\times\;(7)^{2}}}

\\\;\;\;\;\;\sf{:\rightarrow\;\;\;Area\;of\;Circle_{(Inner)}\;=\;\bf{\dfrac{22}{7}\;\times\;7\;\times\;7}}

\\\;\;\;\;\;\sf{:\rightarrow\;\;\;Area\;of\;Circle_{(Inner)}\;=\;\bf{22\;\times\;7}}

\\\;\;\;\;\;\sf{:\rightarrow\;\;\;Area\;of\;Circle_{(Inner)}\;=\;\bf{154\;\;m^{2}}}

\\\;\underline{\boxed{\tt{Area\;\;of\;\;Inner\;\;Circle\;\;=\;\bf{154\;\;m^{2}}}}}

_______________________________________________

~ For the Area of Outer Circle :-

\\\;\;\;\;\;\sf{:\rightarrow\;\;\;Area\;of\;Circle_{(Outer)}\;=\;\bf{\pi r^{2}}}

\\\;\;\;\;\;\sf{:\rightarrow\;\;\;Area\;of\;Circle_{(Outer)}\;=\;\bf{\dfrac{22}{7}\;\times\;(10)^{2}}}

\\\;\;\;\;\;\sf{:\rightarrow\;\;\;Area\;of\;Circle_{(Inner)}\;=\;\bf{\dfrac{22}{7}\;\times\;10\;\times\;10}}

\\\;\;\;\;\;\sf{:\rightarrow\;\;\;Area\;of\;Circle_{(Inner)}\;=\;\bf{\dfrac{2200}{7}}}

\\\;\;\;\;\;\sf{:\rightarrow\;\;\;Area\;of\;Circle_{(Inner)}\;=\;\bf{314.29\;\;m^{2}}}

This is approximate value came out of rounding off the decimal digits.

\\\;\underline{\boxed{\tt{Area\;\;of\;\;Outer\;\;Circle\;\;=\;\bf{314.29\;\;m^{2}}}}}

_______________________________________________

~ For the Area of the Path :-

\\\;\;\;\;\;\sf{:\mapsto\;\;\;Area\;of\;Path\;=\;\bf{Area\;of\;Outer\;Circle\;-\;Area\;of\;Inner\;Circle}}

\\\;\;\;\;\;\sf{:\mapsto\;\;\;Area\;of\;Path\;=\;\bf{314.29\;-\;154}}

\\\;\;\;\;\;\sf{:\mapsto\;\;\;Area\;of\;Path\;=\;\bf{160.29\;\;m^{2}}}

\\\;\large{\underline{\underline{\rm{Thus,\;area\;of\;the\;path\;is\;\;\boxed{\bf{160.29\;\;m^{2}}}}}}}

_______________________________________________

~ For the Total Cost of Cementing the Path :-

\\\;\;\;\;\;\sf{:\Longrightarrow\;\;\;Total\;cost\;of\;Cementing\;=\;\bf{Rate_{(in\;per\;m^{2})}\;\times\;Area\;of\;Path}}

\\\;\;\;\;\;\sf{:\Longrightarrow\;\;\;Total\;cost\;of\;Cementing\;=\;\bf{300\;\times\;160.29}}

\\\;\;\;\;\;\sf{:\Longrightarrow\;\;\;Total\;cost\;of\;Cementing\;=\;\bf{Rs.\;\;48,087}}

\\\;\large{\underline{\underline{\rm{Thus,\;total\;cost\;of\;cementing\;the\;path\;is\;\;\boxed{\bf{Rs.\;\;48,087}}}}}}

_______________________________________________

More to know :-

\\\;\sf{\leadsto\;\;\;Area\;of\;Square\;=\;(Side)^{2}}

\\\;\sf{\leadsto\;\;\;Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\\\;\sf{\leadsto\;\;\;Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\\\;\sf{\leadsto\;\;\;Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\\\;\sf{\leadsto\;\;\;Area\;of\;Trapezium\;=\;\dfrac{1}{2}\:\times\:(Sum\;of\;Parallel\;Sides)\:\times\:(Distance\;between\;them)}


MysterySoul: Noticeable Answer Pablo! :-)
IdyllicAurora: Thanks Asher :)
Answered by MysterySoul
27

\huge\bold{\underline{\underline{Answer!!!}}}

Given,

  • Radius of outer circle = 10 m
  • Radius of inner circle = 7 m

To find,

  • Area of the circular path
  • Cost of cementing it at the cost of 300 Rs per sq.meter?

Formula used,

  • Area of circle = πr²

Solution,

To find out the area of circular path, firstly let's find the area of both circles.

  • Area of inner circle = πr²

{\implies} = 22/7 × 7²

{\implies} = 154 m²

  • Area of outer circle = πr²

{\implies} = 22/7 ×10²

{\implies} = 314.28 m²

Area of circular path = Area of outer circle - Area of inner circle

{\implies} = 314.28 - 154

{\implies} = 160.28 m²

Therefore, the area of of circular path is 160.28 m².

___________________________________

Secondly, let's find out the, Cost of cementing it at the cost of 300 Rs per sq.meter?

  • 1 m² = ₹300
  • 160.28 m² = ?

Let's cross multiply the numbers.

  • 160.28 × 300 = ₹48,084

Therefore, Cost of cementing it at the cost of 300 Rs per sq.meter is 48,084.

Similar questions