Math, asked by prathambhattad, 1 year ago

find the area of the equilateral triangle whose perimeter is 18cm using heron's formula​

Answers

Answered by np14121997
2

Answer:

Step-by-step explanation:

Attachments:
Answered by BrainlyConqueror0901
6

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Area\:of\:triangle=15.58\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  :  \implies  \text{Perimeter\: of \: triangle = 18} \\  \\  \red{ \underline \bold{To \: Find : }} \\   : \implies  \text{Area \: of \: triangle = ?}

• According to given question :

:\implies Perimeter\:of\:triangle=18\\\\ :\implies a+b+c=18\\\\ :\implies  3a=18\\\\ :\implies a=6\:cm\bold{As \: we \: know \: that \: herons \: formula} \\\\ : \implies s =  \frac{a + b + c}{2}  \\  \\   : \implies s =  \frac{Perimeter}{2}  \\  \\  : \implies s =  \frac{18}{2}  \\  \\  \green{ : \implies s = 9} \\  \\   \circ\:  \bold{area \: of \: triangle =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  :  \implies \text{Area \: of \: triangle =}  \sqrt{9(9-6)(9-6)(9- 6)}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{9 \times 3\times 3\times 3}   \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \sqrt{243}   \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =15.58 \: cm^{2}  \\  \\  \  \green{\therefore  \text{Area \: of \: triangle = 15.58 {cm}}^{2} }

Similar questions