Math, asked by NidaQueenOfStudy, 4 months ago

Find the area of the following figure.​

Attachments:

Answers

Answered by Sen0rita
9

Given that,

  • \sf\ \: Parallel \: sides \: of \: a \: trapezium \: are \: 18cm \: and \: 30cm.
  • \sf\ \: Non \: parallel \: side \: is \: 15cm.

Firstly, we've to find the distance between the parallel sides.

  • \sf \: Construct \: a \: line \: from \: Q \: to \: T \: and \: join \: TQ.
  • \sf \: TQ \: is \: the \: perpendicular.
  • \sf \: Now, \: PQ \: = \: ST
  • \sf \: So, \: TR \: = \: SR \: - \: PQ \: = \: 30 \: - \: 18 \: = \: 12cm.

\sf As \: we \: know \: that :

\boxed{\boxed{\bold\purple{ {\bigstar \:  \:hypotenuse }^{2} = {perpendicular}^{2}  +  {base}^{2}  }}}

\underline{\bold{According \: to \: question \:  -  \:  \:  \: }}

 \sf\implies\: \sf\purple{(QR)^{2}   =  {(TQ)}^{2} +  {(TR)}^{2}  } \\  \\ \sf\implies(15) {}^{2}  = (TQ) {}^{2}  + (12) {}^{2}  \\  \\ \sf\implies \: 225 = (TQ) ^{2} \:  + 144 \\  \\ \sf\implies \: 225 - 144 = {(tQ)}^{2}  \\  \\ \sf\implies \: 81 = {(TQ)}^{2} \\  \\ \sf\implies \: TQ \:  =  \sqrt{81}  \\  \\ \sf\implies \: TQ \:  =  \boxed{\bold\purple{9cm}}  \:  \bigstar

\sf\therefore\underline{Distance \: between \: the \: parallel \: sides \: is \: \bold{9cm.}}

 \sf \: As \: we \: know \: that :

\boxed{\boxed{\bold\purple{\bigstar \: area \: of \: a \: trapezium \:  =  \frac{1}{2}  \times (sum \: of \: parallel \: sides \:) \times distance }}}

\sf \: Now

\sf\implies \: area \:  =   \frac{1}{2}  \times \: (18  + 30) \times 9 \\  \\ \sf\implies \: area \:  =  \frac{1}{2}  \times 48 \times 9 \\  \\ \sf\implies \: area \:  = \:  \frac{48}{2}  \times 9 \\  \\ \sf\implies \: \: area \:  =  \cancel \dfrac{48}{2}  \times 9 \:  \\  \\ \sf\implies \: area \:  = 24 \times 9 \: \\  \\ \sf\implies \: area \:  =  \: \boxed{\bold\purple{216 {cm}^{2} }} \bigstar

\sf\therefore\underline{Hence, \: the \: area \: of \: the \: trapezium \: is \: \bold{216cm².}}

Attachments:

Cordelia: Nice Answer ☺︎︎❤︎
Sen0rita: thenku ☺︎︎❤︎
Similar questions